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In Ethereum blockchain, smart contracts are immutable, public, and distributed. However,
they are subject to many vulnerabilities stemming from coding errors made by developers.
Seven cybersecurity incidents occurred in Ethereum smart contracts between 2016 and
2018, which led to financial losses estimated to be over US$ 289 million. Reentrancy
vulnerability was the cause of two of these incidents, and the impacts went far beyond
financial loss. Several reentrancy countermeasures are available, which are based on
predefined patterns that are used to prevent vulnerability exploitation before the
deployment of a smart contract; however, several limitations have been identified in
these countermeasures. Motivated by all these issues, the objective of this article is to
help developers improve the cybersecurity of smart contracts by proposing a solution that
calculates the difference between the contract balance and the total balance of all
participants in a smart contract before and after any operation in a transaction that
changes its state. Proof-of-concept implementations show that this solution can provide a
detection and prevention mechanism against reentrancy attacks during the execution of
any smart contract.

Keywords: blockchain technology, Ethereum, cybersecurity, smart contract, reentrancy vulnerability

INTRODUCTION

Since 2015, when Ethereum smart contracts were introduced, there have been several incidents in
which the operation of smart contracts that held an amount of Ether resulted in conflicts or issues
(Alkhalifah et al., 2019). Two of these incidents were caused by reentrancy vulnerability. The first
incident was in 2016 when an attacker launched a reentrance attack against the distributed
autonomous organization (DAO) smart contract, which resulted in a loss of more than
3,600,000 million Ethers worth more than US$ 60 million at that time; the Ether market
plunged, and the incident caused a hard fork leading to two versions of the Ethereum
blockchain. The second incident was in 2018 when an adversary stole more than 165 Ethers,
which is worth almost US$ 40,000, from SpankChain due to reentrancy vulnerability in the smart
contract of the network’s payment channel (Alkhalifah et al., 2020). Despite these incidents, the
popularity of smart contracts is growing; however, they are also becoming more attractive targets for
adversaries.

Smart contracts are one of the most used attack vectors to Ethereum because they are like any
other executable applications that operate on computers. Nevertheless, smart contracts are more
sensitive in terms of cybersecurity due to the following factors:
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• Smart contracts in Ethereum blockchain are considered a
new platform; therefore, the coding practices of smart
contracts are not yet mature (Hung et al., 2019).

• The smart contract can be associated with a digital fortune
that might be worth millions of dollars (Schrans et al., 2018).

• The smart contracts operate on top of a blockchain that is
immutable. Thus, once the smart contracts are deployed on
the blockchain, it can possibly be impractical and intensely
complex to modify them even if they contain flaws (the
“code is law” concept) (Madnick 2020).

Is it true that the “code is law” in Ethereum smart contracts?
Many countermeasures are aimed to detect security flaws during
the development stage since the contracts operate on top of
immutable technology. However, smart contract developers
need to act to address these flaws during the execution stage
and not only rely on the development stage. The question is how
we can secure a smart contract during the execution stage, even
though it is immutable and contains flaws.

This article is organized as follows. In the Related Work and
the Limitations of Current Solutions section, we analyze the
related literature into two categories: single-function and
cross-function reentrancy attacks. We summarize the
limitations of existing solutions while preventing vulnerability
exploitation before the deployment of smart contracts. We
propose a solution along with a prevention mechanism to
protect smart contracts and a detection technique to identify
attackers in The Proposed Solution section. The Implementation of
the Solution and Proof of Concept sections describe the three
approaches of our implementation architecture and the proof-of-
concept result, which shows that the proposed solution can be
utilized against reentrancy attacks during the execution of any
smart contract. We finally summarize the findings and provide
the future research directions in the Conclusion and Future
Research section.

RELATED WORK AND THE LIMITATIONS
OF CURRENT SOLUTIONS

Reentrancy attacks are one of the common threats in Ethereum
blockchain, which are associated with the Solidity programming
language. The attacks occur when an adversary leverages an
external call of a smart contract by forcing the contract to
execute additional code by utilizing a fallback function to call
back to itself.

There are two types of reentrancy attacks (Samreen and Alalfi
2020): single-function and cross-function attack. A single-
function attack occurs when the adversary attempts to
recursively call the vulnerable function. A cross-function
attack occurs when the target function state is shared with
another function that the adversary desires to exploit.

Current Defensive Methods
There are different methods used to protect smart contracts from
reentrancy vulnerability. These proactive methods, which are
utilized before the deployment of the smart contracts, are

vulnerability-detection tools for Ethereum smart contracts,
security based on programming languages, and security based
on the development of smart contracts.

Smart Contracts Vulnerabilities Detection Tools
There are several detection tools for smart contract vulnerabilities
that can detect reentrancy vulnerability. The following sections
will briefly introduce the detection tools that can discover the
reentrancy vulnerability.

SmartCheck
SmartCheck is a code analysis tool that detects code issues in
Solidity. The source code written by Solidity is translated into an
XML-based intermediate representation. After that,
SmartCheck checks the output against XPath patterns
(Tikhomirov et al., 2018). SmartCheck automatically checks
for atrocious coding practices and vulnerabilities by
highlighting them and providing a vulnerability explanation
with a suggested solution to avoid cybersecurity issues (Dika
and Nowostawski, 2018).

Remix
Remix is a web-based IDE for writing and debugging smart
contracts by utilizing high-level languages such as Solidity and
Vyper. Remix identifies the possible vulnerable coding pattern
and minimizes coding mistakes. It can identify several
vulnerabilities such as reentrancy, timestamp dependence, and
gas-costly patterns vulnerabilities (Dika and Nowostawski, 2018).

Oyente
Oyente is a symbolic execution tool that helps smart contract
developers to detect possible vulnerabilities as a mitigation
technique before the deployment. Oyente pursues the smart
contracts execution paradigm in Ethereum blockchain and
directly operates on the EVM bytecode without the need to
access the high-level source code. The tool is open-source and
is available for public use (Luu et al., 2016; Lee, 2018).

Mythril
Mythril is a security analysis tool to analyze smart contracts’
security issues in the Ethereum blockchain. It provides a different
analysis of vulnerabilities in smart contracts based on symbolic
code execution (Prechtel et al., 2019). Mythril works with EVM
bytecode to detect cybersecurity vulnerabilities in smart contracts
that are developed for EVM-compatible blockchains such as
Ethereum and Tron. It uses taint analysis and symbolic
execution to detect several vulnerabilities such as reentrancy
and unprotected functions vulnerabilities (Zhang et al., 2019).

Securify
Securify is a cybersecurity analyzer for smart contracts in the
Ethereum blockchain that is fully automated and scalable and
categorizes the contract behaviors into safe or unsafe based on a
provided property. There are two steps in Securify analysis: the
first is extracting semantic information from the code by
symbolically analyzing the dependency graph of the smart
contract; the second step is checking violation and compliance

Frontiers in Computer Science | www.frontiersin.org February 2021 | Volume 3 | Article 5987802

Alkhalifah et al. Detecting and Preventing Reentrancy Attacks

https://doi.org/10.3389/fcomp.2021.598780
www.frontiersin.org
www.frontiersin.org


patterns that set the conditions to identify whether a property
holds or not (Tsankov et al., 2018).

F* Framework
F* framework is a verification method based on F* language
offered by Microsoft Research. The smart contract is checked to
see if it is correct by translating the code written in Solidity to F*
language. Since the smart contracts’ binary codes are available on
the Ethereum network, whereas the source code is hard to obtain,
the binary files on Ethereum blockchain are decompiled to F*
language to identify possible vulnerabilities such as exception
disorders and reentrancy vulnerabilities (Liu and Liu, 2019).

Security Based on Programming Languages
Several high-level programming languages are introduced to
develop smart contracts securely. For instance, Obsidian is a
state-oriented language that follows the states of the smart
contracts to avoid reentrancy vulnerability and treats Ether as
a linear resource to allow the compiler to track financial
information. Currently, Obsidian is not ready for general use
and still in the development stage (Coblenz, 2017).

Another example is Vyper that is also a high-level
programming language that includes other new functionalities
not supported by Solidity and eliminates some of the Solidity
features. It includes new functionalities such as overflow checking
and bounds, and it eliminates features such as modifiers and
recursive calling. Vyper helps developers to avoid vulnerabilities
such as integer underflow and overflow vulnerability and denial-
of-service (DOS) with unbounded operations vulnerability
(Adrian, 2018).

Security Based on the Development of Smart
Contracts
There are a few approaches to enhancing the programming
model of smart contracts to aid developers in mitigating or
avoiding reentrancy vulnerability. One of them, introduced by
ConsenSys Diligence, is Ethereum smart contract best practices.
This provides fundamental information about security
considerations for Solidity programmers. Furthermore, various
recommendations are provided to guide smart contract
developers on Ethereum to avoid coding issues. Their
recommendations are divided into two categories, namely,
protocol-specific recommendations and Solidity-specific
recommendations. Protocol-specific recommendations apply to
any smart contract development on Ethereum to prevent
reentrancy vulnerability, such as avoiding state changes after
external calls. The other recommendations are the Solidity-
specific recommendations, which might be informative for
smart contract developers in other languages to prevent
reentrancy attacks, such as using modifiers only for assertions
(Chen et al., 2020).

Limitations of the Current Solutions
These solutions are generally based on a predefined specific
pattern; when this pattern is detected, the vulnerability in the
smart contract code is then detected.

The following limitations were found:

• Detection tools that detect reentrancy vulnerability analyze
the smart contract code based on predefined attack patterns,
and if the patterns match any part in the code, then the tools
discover the vulnerability. Thus, these approaches mainly
rely on complete patterns and the specific quality of these
patterns.

• The patterns these solutions rely on are based on the
observation of the previous attacks and known
vulnerabilities, which makes them limited and difficult to
generalize.

• All the solutions are only applicable before the deployment
of smart contracts. This means once the smart contract is
deployed on the Ethereum network, these solutions cannot
prevent reentrancy attacks and cannot detect the attacker.

• If a new reentrancy pattern is introduced after the
deployment of the smart contracts, these solutions need
to be updated; otherwise, they will not be able to detect the
new attack patterns.

THE PROPOSED SOLUTION

We have analyzed the root cause of reentrancy attack on the lack
of integrity checking on smart contract balance and proposed a
solution to overcome these limitations by providing a prevention
technique to protect the smart contract and a detection technique
to detect the attacker that is not based on any pattern and can be
utilized after the deployment of the smart contract. This solution
can differentiate between honest and malicious transactions, can
be implemented within several approaches, and can be utilized on
the current Ethereum platform.

In any smart contract that manages a fund for various
participants, two values maintain the funds in the smart
contract. The first value is maintained by the protocol layer,
which is the contract balance represented in Solidity as
address(this).balance, whereas the second value is maintained
by the application layer, which is usually represented in Solidity
as balances[ParticipantAddress], which maintains the balance of
each participant in the smart contract. The contract balance and
the total balance of all participants are not always the same;
however, when any smart contract is initiated, the difference
between them must always be the same after and before any
operation in the smart contract that changes the state of the
smart contract in order to protect the funds in the smart
contract. This is because adversaries who want to launch a
reentrancy attack are aiming to trick the smart contract in the
application layer by decreasing the value that is maintained by
the protocol layer and at the same time keeping the value that is
maintained by the application layer as it is. The attackers do this
because they can manipulate the smart contract in the
application layer, but they cannot manipulate the value
[address(this).balance] maintained by the protocol layer
because it is secured by the miners who maintain it. The
only way the attacker can carry out such an attack is to trick
the smart contract in the application layer, which will lead to
change the difference between these two values, and if the
attacker succeeds in this, then the attacker will be able to
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steal the funds and the smart contract will not be aware of the
attack and will not be able to stop the attacker.

This solution is based on these two values, namely, the
contract balance (noted as a before the operation and a′ after
the operation) and the total balance of all participants in the
smart contract (noted as b before operation and b′ after the
operation). The solution simply calculates the difference
between a and b before and a′ and b′ after each operation
within a transaction in any smart contract. The transaction is
noted as T and the difference before the operation is noted as x,
whereas the difference after the operation is noted as x′. If the
difference is the same (x � x′), then the operation is legitimate;
otherwise, the operation is malicious. For instance, suppose that
a smart contract has a reentrancy vulnerability and has 10
Ethers in its balance (a � 10) and three participants, where
two are honest and one is a malicious user who tries to exploit
the vulnerability. Each of the honest participants has 2 Ethers in

their balance; therefore, the total balance for all participants is 4
(b � 4). The difference, in this case, is 6 (x1 � 6). The malicious
participant conducts a reentrancy attack. The adversary sends
T1 to deposit 1 Ether to the contract; therefore, a′ � 11, b′ � 5, x1
� 6, and x1′ � 6. Since x1 � x1′, this transaction is not malicious.
After that, the adversary sends T2 to withdraw 1 Ether, utilizing
the recursive function to exploit the reentrancy vulnerability.
After the first operation in T2 and before the second operation
starts, the values will be a � 11, b � 5, a′ � 10, b′ � 5, x1 � 6, and
x1′ � 5. x1 ≠ x1′ because the execution did not reach the
statement that decrements the balance of malicious user;
therefore, a′ will be decreased by 1; however, the b′ value
will still be the same, as shown in Figure 1. This operation
will be blocked, and the transaction will be considered a
malicious transaction; therefore, the attacker’s address will be
stored by the solution.

Our solution formula is as follows.

∀ O ∈ T: (O is valid) 5 (x � x′),
where
T � a transaction,
O � an operation in the transaction that changes the smart
contract state,
x � a – b,
x′ � a′ – b′,
a � contract balance before O,

b � ∑
n

i�1
pi beforeO,

a′ � contract balance after O,

b′ � ∑
n

i�1
pi afterO,

pi � the balance of participant i in the contract, and
n � the number of participants in the contract.

IMPLEMENTATION OF THE SOLUTION

There are three approaches to implementing the architecture of
the solution, as depicted in Figure 2. This solution can be
implemented on the dApp layer (Approach 1), or on the
blockchain layer as an independent smart contract (Approach
2) to control one or more smart contracts’ behavior, or within a
smart contract (Approach 3).

In Approach 1, the dApp layer is considered as a checkpoint
that receives data from the smart contract. Based on these data,
the dApp compares the difference between the stored value of the
smart contract balance and the total balance of all participants
and the difference between the current contract balance and the
current total of all participants. If they match, the dApp sends the
decision “true” to allow the operation in the transaction to be
completed; otherwise, it sends “false” to block the operation of the
transaction and notifies the smart contract owner by storing the
attacker’s address.

Approach 2 is similar to Approach 1; however, another smart
contract will play the dApp checkpoint role. All malicious
operations in the transactions will be blocked and the smart
contract owner will also be notified by storing the attacker’s
address in the contract.

FIGURE 1 | Reentrancy attack scenario.
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Approach 3 works within the smart contract itself, monitoring
the operations that change the state of the smart contract; and if
any malicious operation occurs, the smart contract will block the
operation and the attacker address will be stored to notify
the owner.

Figure 3 illustrates the solution data flow which is applicable
in all three approaches.

The first three steps in the data flow will happen during the
initialization of the smart contract that needs the protection. The
solution should obtain the smart contract balance and the total
balance of all smart contracts’ participants. The difference
between these values should be calculated in the third step. All
participants can interact with the smart contract in the fourth step
and during the execution, the solution continuously monitors the
smart contract balance and all participants balance before and
after each operation that changes the smart contract state. In the
seventh step, the solution calculates the difference again and
compares the result with the stored result. If the results are equal,
the value of x is changed to the value of x′ and the execution
completes; otherwise, the execution is blocked and the smart
contract owner will be notified by storing the address of the
attacker in the contract. Figure 4 shows an example of a UML
class diagram of Approach 3, which can be applied for a bank
smart contract.

Monitoring the contract balance and all the participants’
balances to prevent reentrancy vulnerability and detect the
attacker can be implemented in various ways. This section will

provide an example of the implementation of Approach 3 based
on the previous UML class diagram, which is written by using the
Solidity programming language as shown in Figure 5. There are
six variables and eight functions with the constructor. Four
variables are utilized by the solution: participantsLiquidity,
beforeOperation, afterOperation, and attacker. The reentrancy
vulnerability is stated in the code in line (46) that may cause
different invocations for different functions, which will be
illustrated in the test scenarios in the next chapter. The
contract owner is the only one who can retrieve the address of
the attacker because of the modifier in line (20).

PROOF OF CONCEPT

The Testing Environment
Remix IDE was used to host the test environment and to compile,
deploy, debug, and test the solution. This test utilized the
JavaScript VM environment, which emulates a real blockchain,
to execute all the test transactions. All the smart contracts that
were used in this test were written in the Solidity programming
language. Two attack case studies were conducted: a single-
function and a cross-function reentrancy attack. The single-
function reentrancy attack case study contained three smart
contracts, the Bank{}, Attacker{}, and BankWithoutSolution{}
contracts. The Bank{} and BankWithoutSolution{} contracts
included a reentrancy vulnerability; however, the Bank{}

FIGURE 2 | Three approaches to implementing the architecture of the solution.
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contract included the solution as shown in Figure 5 in Section
Implementation of the Solution,whereas the BankWithoutSolution
{} contract did not use the solution. The Attacker{} contract
included the malicious code that conducted the attacks. The
second case study is the cross-function reentrancy attack case
study, which included four smart contracts Bank{}, Attacker1{},
BankWithoutSolution{}, and Attacker2{} contracts. The Bank{}
and BankWithoutSolution{} contracts were the same as those in
the first case study and the Attacker1{} contract was utilized to
launch the attack, while the Attacker2{} contract was utilized to
receive the stolen coin. Both case studies will be illustrated in
detail in the following sections.

The Testing Scenario
Each of the two case studies consists of two test scenarios, which
are firstly conducting the attack without the solution and
secondly conducting the attack with the solution. The Bank{}
and BankWithoutSolution{} contracts were funded by an
individual account by 10 Ethers during the deployment. The
first test scenario in each attack case study was conducted to see if
the attacker was able to steal coins from the BankWithoutSolution
{} contract and the second test scenario was conducted to see if
the solution was able to detect and prevent the reentrancy attack
from the Bank{} contract.

FiGURE 3 | The solution data flow.

FIGURE 4 | UML class diagram example for the solution applied to a
bank contract.
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FIGURE 5 | The solution is implemented in the code of the bank smart contract.
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Single-Function Reentrancy Attack Case
Study
The Attacker{} contract as shown in Figure 6 will be used in the
following scenarios. The Attacker{} contract code in the first
scenario will be changed in lines (90) and (94) from Bank to
BankWithoutSolution.

First Test Scenario: Single-Function Attack (Without
the Solution)
The first test scenario conducted a single-function reentrancy
attack against BankWithoutSolution{} contract. The
BankWithoutSolution{} contract code is shown in Figure 7,
which contained the vulnerability in line (23).

The attack sequence diagram for the first test scenario in the
single-function reentrancy attack case study is shown in Figure 8.
All the transactions and calls involved in the first test scenario are
shown in Supplementary Appendix 1.

The scenario steps were as follows:

1. Deploying the BankWithoutSolution{} contract with funds
equal to 10 Ethers.

2. Deploying the Attacker{} contract by passing the
BankWithoutSolution{} contract address as a parameter in
the Attacker{} constructor and with funds equal to 1 Ether.

3. Calling the getAttackerBalance() function in the Attacker{}
contract to check the balance, which is equal to1 Ether.

4. Depositing 1 Ether from the Attacker{} contract to the
BankWithoutSolution{} contract.

5. Calling the getAttackerBalance() function in the Attacker{}
contract to check that the balance is equal to 0 Ethers.

6. Calling the getBankLiquidity() function in the
BankWithoutSolution{} contract to check that the balance is
equal to 11 Ethers.

7. Conducting the single-function reentrancy attack by calling the
withdraw function in the Attacker{} contract.

8. Calling the getBankLiquidity() function in the
BankWithoutSolution{} contract to check the balance, which
is equal to 0 Ethers.

9. Calling the getAttackerBalance() function in the Attacker{}
contract to check the balance, which is equal to 11 Ethers.

In the first scenario, the single-function reentrancy attack
succeeded in leveraging the reentrancy vulnerability and the
attacker stole all the BankWithoutSolution{} contract funds.

Second Test Scenario: Single-Function Attack (With
the Solution)
The second test scenario conducts a single-function reentrancy
attack on the Bank{} contract. The Bank{} code is shown in

FIGURE 6 | The Attacker{} contract.
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Figure 5 in Section Implementation of the Solution, which
contains the vulnerability in line (46). The attack sequence
diagram for the second test scenario in the single-function
reentrancy attack case study is shown in Figure 9. All of the
transactions and calls involved in the second test scenario are
shown in Supplementary Appendix 2.

The scenario steps were as follows:

1. Deploying the Bank{} contract with funds equal to 10 Ethers.
2. Deploying the Attacker{} contract by passing the Bank{}

contract address as a parameter in the Attacker{}
constructor and with funds equal to 1 Ether.

3. Calling the getAttackerBalance() function in the Attacker{}
contract to check the balance, which is equal to 1 Ether.

4. Depositing 1 Ether from the Attacker{} contract to the Bank{}
contract.

5. Calling the getAttackerBalance() function in the
Attacker{} contract to check that the balance is equal
to 0 Ethers.

6. Calling the getBankLiquidity() function in the Bank{} contract
to check that the balance is equal to 11 Ethers.

7. Conducting the single-function reentrancy attack by
calling the withdraw function in the Attacker{}
contract.

8. Calling the getBankLiquidity() function in the Bank{} contract
to check the balance, which is equal to 10 Ethers.

9. Calling the getAttackerBalance() function in the Attacker{}
contract to check the balance, which is equal to 1 Ether.

FIGURE 7 | The BankWithoutSolution{} contract.
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10. Calling the getAttackerAddress() in the Bank{} contract from
the owner account to retrieve the attacker address.

In the second scenario, the single-function reentrancy attack
failed to leverage the reentrancy vulnerability and the Attacker{}
address was stored in the Bank{} contract.

Cross-FunctionReentrancy AttackCase Study
The Attacker1{} and Attacker2{} contracts as shown in Figure 10
were utilized in the following scenarios. The Attacker1{} and
Attacker2{} contracts code in the first scenario were changed in
lines (86) and (91) in Attacker1{} and line (123) in Attacker2{}
from Bank to BankWithoutSolution.

FIGURE 8 | UML sequence diagram for the first scenario in the first case study.
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FIGURE 9 | UML sequence diagram for the second scenario in the first case study.

FIGURE 10 | The Attacker1{} and Attacker2{} contracts code.
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First Test Scenario: Cross-Function Attack (Without
the Solution)

The first test scenario launched a cross-function reentrancy
attack on the BankWithoutSolution{} contract. The
BankWithoutSolution{} code is shown in Figure 7, which
contained the vulnerability in line (23). The attack sequence
diagram for the first test scenario in the cross-function
reentrancy attack case study is shown in Figure 11. All the
transactions and calls involved in the first test scenario are
shown in Supplementary Appendix 3.

The scenario steps were as follows:

1. Deploying the BankWithoutSolution{} contract with funds
equal to 10 Ethers.

2. Deploying the Attacker1{} contract by passing the
BankWithoutSolution{} contract address as a parameter in
theAttacker1{} constructor and with funds equal to 10 Ethers.

3. Deploying the Attacker2{} contract by passing the
BankWithoutSolution{} contract address as a parameter in
the Attacker2{} constructor.

4. Calling the getAttackerBalance() function in the Attacker2{}
contract to check the balance, which is equal to 0 Ethers.

5. Depositing 10 Ethers from the Attacker1{} contract to the
BankWithoutSolution{} contract.

6. Calling the getAttackerBalance() function in the Attacker1{}
contract to check that the balance is equal to 0 Ethers.

7. Calling the getBankLiquidity() function in the
BankWithoutSolution{} contract to check that the balance
is equal to 20 Ethers.

8. Calling the setAttacker2() function in the Attacker1{} contract
and passing the Attacker2{} contract address as a parameter.

9. Conducting the cross-function reentrancy attack by calling
the withdraw() function in the Attacker1{} contract.

10. Calling withdraw() function in the Attacker2{} contract to
steal 10 Ethers.

11. Calling the getBankLiquidity() function in the
BankWithoutSolution{} contract to check the balance,
which is equal to 0 Ethers.

12. Calling the getAttackerBalance() function in the Attacker1{}
contract to check the balance, which is equal to 10 Ethers.

13. Calling the getAttackerBalance() function in the Attacker2{}
contract to check the balance, which is equal to 10 Ethers.

In the first scenario, the cross-function reentrancy attack
succeeded in leveraging the reentrancy vulnerability, and the
Attacker2{} contract withdrew 10 Ethers even though the
contract did not have any funds in the BankWithoutSolution{}
contract.

Second Test Scenario: Cross-Function Attack (With
the Solution)
The second test scenario conducted a cross-function reentrancy
attack against the Bank{} contract. The Bank{} contract code is
shown in Figure 5 in the Implementation of the Solution section,
which contained the vulnerability in line (46). The attack
sequence diagram for the second test scenario in the cross-
function reentrancy attack case study is shown in Figure 12.
All the transactions and calls involved in the second test scenario
are shown in Supplementary Appendix 4.

FIGURE 11 | UML sequence diagram for the first scenario in the second case study.
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The scenario steps were as follows:

1. Deploying the Bank{} contract with funds equal to 10 Ethers.
2. Deploying the Attacker1{} contract by passing the Bank{}

contract address as a parameter in theAttacker1{} constructor
and with funds equal to 10 Ethers.

3. Deploying the Attacker2{} contract by passing the Bank{}
contract address as a parameter in the Attacker2{}
constructor.

4. Calling the getAttackerBalance() function in the Attacker2{}
contract to check the balance, which is equal to 0 Ethers.

5. Depositing 10 Ethers from the Attacker1{} contract to the
Bank{} contract.

6. Calling the getAttackerBalance() function in the Attacker1{}
contract to check that the balance is equal to 0 Ethers.

7. Calling the getBankLiquidity() function in the Bank{} contract
to check that the balance is equal to 20 Ethers.

8. Calling the setAttacker2() function in the Attacker1{}
contract and passing the Attacker2{} contract address as a
parameter.

9. Conducting the cross-function reentrancy attack by calling
the withdraw() function in the Attacker1{} contract.

10. Calling withdraw() function in the Attacker2{} contract to
steal 10 Ethers, which will fail because there are no funds for
Attacker2{} in the Bank{} contract.

11. Calling the getBankLiquidity() function in the Bank{} contract
to check the balance, which is equal to 10 Ethers.

12. Calling the getAttackerBalance() function in the
Attacker1{} contract to check the balance, which is
equal to 10 Ethers.

13. Calling the getAttackerBalance() function in the Attacker2{}
contract to check the balance, which is equal to 0 Ethers,
indicating that the attack is failed.

14. Calling the getAttackerAddress() in the Bank{} contract from
the owner account to retrieve the attacker address.

In the second scenario, the cross-function reentrancy attack
failed in leveraging the reentrancy vulnerability, and the
Attacker1{} address is stored in the Bank{} contract.

The two scenarios in the two case studies followed the same attack
steps and the solution, which is based on monitoring the difference
between the contract balance and total of all participants’ balances,
proved that it can prevent the reentrancy attack during the execution
time even though the reentrancy vulnerability existed in the contract.
Additionally, the solution detected the attacker by storing its account
address, which is accessible only by the targeted contract owner.

Discussion
From the previous two experiments, the proposed solution can
produce the following positive results:

FIGURE 12 | UML sequence diagram for the second scenario in the second case study.
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• Test case 1: single-function reentrancy attack, the proposed
solution is successful in detecting the attacker and
preventing the attack.

• Test case 2: cross-function reentrancy attack, the proposed
solution is successful in detecting the attacker and
preventing the attack

The solution’s hypothesis relies on the fact that the difference
between the two values, the contract balance and the total of all
participants’ balances, must be the same before and after any
operation that changes the state of any contract. The solution can
be implemented in different layers, as shown in the solution
architecture, and can be implemented in different programming
languages. Unlike the current defensive methodologies for
reentrancy vulnerability, the proposed solution can work
during the execution time after the smart contract deployment
and can detect the attacker by recording its account address. The
solution can be implemented in different ways; however, the main
concept of the solution must be the same, which is based on
monitoring the two values. The proposed solution can provide a
secure and reentrancy-free Ethereum network. This solution
targets the reentrancy vulnerability, which is one of the
vulnerabilities in the Solidity layer.

CONCLUSION AND FUTURE RESEARCH

Our solution is based on the fact that the difference between the
two values, the contract balance and the total balance of all
participants, must be the same before and after any operation that
changes the state of a contract. The solution can be implemented
using different approaches and in different programming
languages. Unlike the current defensive methods against
reentrancy attacks, this solution works during execution, that
is, after the smart contract is deployed, and can identify an
attacker.

This article has analyzed the root cause of Ethereum
reentrancy attacks and has proposed a solution with a proof-
of-concept implementation, which can detect, prevent, and
identify the account address of an attacker during the
execution of a smart contract.

The result of this research prompts several possible future
studies in enhancing the security of Ethereum. Firstly, the

solution relies on the smart contract developers, a protocol
layer solution can be established to protect all the smart
contracts on the Ethereum network. The miners can check the
transactions using this solution and if the transaction is
considered malicious based on the solution, the miners can
reject the transaction. Secondly, we invite the Ethereum
community research validating the solution in the other
approaches suggested here. This would evaluate the
solution in different environments and measure the
efficiency of these approaches to find what the best
approach is in terms of security and efficiency. Finally, we
shall extend this solution to detect and prevent other known
smart contract vulnerabilities during the execution time
through self-protection techniques carried out by the
smart contract in case of attack. Since the smart contract
is immutable against modification after the deployment, this
research direction is very important.

There are many challenges to improving the security of smart
contracts. A simple code flaw can have catastrophic results for a
smart contract holding huge funds. Therefore, the industry and
academia need to invest in future research to help create a more
trustworthy Ethereum blockchain and improve the security of
smart contracts.
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