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ABSTRACT 14 

 A fast-acting, mean-field method for simulating precipitation of the  and 15 

 phases during aging of superalloy 718 following super--solvus solution 16 

treatment was formulated and validated using observations in the literature. The 17 

approach assumed classical (homogeneous) nucleation and diffusion-controlled 18 

growth (N&G) of disk/ellipsoidal-shaped- and spherical- particles. For the  19 

precipitates in particular, the evolution equations for both nucleation and growth 20 

incorporated corrections for the non-spherical shape, assuming a fixed aspect 21 

ratio. In addition, special attention was paid to the choice of input material 22 

properties for simulations. These parameters included the bulk free energies of 23 

transformation, particle-matrix (misfit) elastic strain energy (for ), effective 24 

diffusivities, and the - and - interface energies. The applicability of the 25 

diffusivities and interface energies chosen for the N&G simulations was 26 

established by their consistency in replicating previously-measured rate 27 

constants for the diffusion-controlled coarsening of both  and . The N&G 28 

formulation was discretized to obtain numerical (spreadsheet) solutions via the 29 
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Kampmann-Wagner approach. Simulation results for the temporal evolution of 30 

volume fraction and average size of the precipitates showed good agreement 31 

with experimental measurements. The sensitivity of model predictions to various 32 

input parameters was also quantified.    33 

Key words: Superalloy 718, precipitation, nucleation and growth, coarsening, 34 

fast-acting simulation. 35 

I. INTRODUCTION 36 

 Nickel-base superalloys are enabling materials for a variety of demanding 37 

high-temperature, load-bearing applications. These include service in both 38 

aerospace (propulsion) and land-base (power-generation) gas-turbine systems 39 

[1]. The importance of superalloys is underscored by long-running, quadrennial 40 

symposia (and state-of the art reviews therein) dedicated to superalloys in 41 

general and superalloys 718, 625, and 706 in particular, e.g. References 2-5.  42 

Typically, components made from supealloys must withstand 43 

temperatures in the range between ~900 and 1400 K. In general, as the service 44 

temperature increases, the quantity of alloying elements in the superalloy (and 45 

concomitant volume fraction of ordered strengthening phase(s) such as fcc-like  46 

(with an L12 structure) or bct  (DO22) precipitated in an fcc  matrix) increases 47 

as well. Such variations in alloying content often dictate the type of material-48 

synthesis approach. For superalloys that contain relatively-low or moderate 49 

amounts of alloying, synthesis usually comprises the casting of large ingots 50 

which are subsequently homogenized, hot worked to produce a recrystallized, 51 

moderately-fine grain size, and, finally, solution treated and aged.  Materials in 52 
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this class include 718, 625, and Waspaloy. As alloy content (and the tendency for 53 

macrosegregation during melting and solidification) increases, fabrication 54 

methods based on melting, powder atomization, consolidation, hot working, and 55 

final heat treatment must be utilized. Powder metallurgy (PM) alloys made by this 56 

means include IN-100, Rene 88DT, and RR1000. Last, superalloys designed for 57 

the highest-temperature applications (e.g., Rene N5, PWA1484, CMSX-4 for 58 

turbine-blade applications) which often incorporate high levels of refractory 59 

elements are manufactured via directional-solidification (DS) techniques (e.g., 60 

the Bridgman or liquid-metal-cooling processes) to produce a single crystal or 61 

columnar DS grain structure.   62 

The final heat treatment of superalloy components often consists of 63 

solution treatment and aging. For cast-and-wrought (ingot-metallurgy) parts such 64 

as those made from 718, solution treatment is followed by oil or water quenching 65 

and a single or two-step aging process to develop fine precipitate structures. By 66 

contrast, the more-highly-enriched PM superalloys are usually solution treated 67 

and cooled carefully (often to avoid quench cracking if the  grain size is 68 

moderately-coarse) during which precipitation occurs simultaneously; this is 69 

followed by a final isothermal aging step to produce additional very fine 70 

precipitates. Selection of solution treatment temperature and aging 71 

temperature(s)/time(s) can be quite complex especially for materials such as 718 72 

which contain both a grain-size-control phase () and two strengthening phases 73 

( and ).    74 
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The effect of heat-treatment parameters such as time and temperature (for 75 

isothermal treatments) or cooling rate on precipitation kinetics are often 76 

quantified by one of two broad types of techniques, i.e., empirical- 77 

(phenomenological-) or mechanism- based approaches. The former includes 78 

series of often-time-consuming heat treatments followed by metallography, 79 

hardness measurements, etc to assess the rate of approach to the equilibrium 80 

volume fraction and nominal size of precipitates during aging. The observations 81 

are then typically expressed in the form of isothermal-transformation (IT) or 82 

cooling-transformation (CT) diagrams. For 718, there have been numerous such 83 

measurements of IT and CT behavior [6-12]. Unfortunately, these measurements 84 

have often appeared to be contradictory, partly because of the difficulty of 85 

quantifying the early-stage nucleation and growth of very fine (nanometer-scale) 86 

 and  phases as well as the effect of relatively-small variations in alloy content 87 

on phase equilibria and precipitation kinetics [13, 14].  88 

Attempts to understand the nature of precipitation in superalloys more 89 

completely have relied on modeling-and-simulation methods that treat the 90 

detailed mechanisms and interplay of nucleation and growth (N&G) and 91 

sometimes coarsening. These methods fall into two broad categories, mean field 92 

and phase field. In the mean-field approach, standard relations for N&G [15] are 93 

utilized to describe the evolution of intragranular precipitates assuming a uniform 94 

(average) matrix composition (i.e., “mean field”) that provides the supersaturation 95 

driving force for such phenomena.  The approach has been demonstrated to be 96 

especially useful for describing precipitation in -strengthened PM superalloys [16-97 
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23]. Phase-field methods, on the other hand, can provide more-detailed 98 

information on the local evolution of concentration fields that control N&G. They 99 

have been utilized to investigate both isothermal and continuous-cooling heat 100 

treatments and have thus also been applied to provide insight into precipitation in 101 

- nickel-base superalloys [24-26]. However, the technique is computationally 102 

complex and does not lend itself readily to the rapid evaluation of the effect of 103 

variations in heat treatment parameters, material composition/properties, etc. on 104 

microstructure prediction. 105 

Compared to the numerous modeling efforts devoted to PM -106 

strengthened superalloys and selected other superalloys (e.g., 625 [27] and ATI 107 

718Plus [28]), the simulation of aging heat treatments for cast-and-wrought 718 108 

has received relatively-little attention [29-32]. Such limited work may be ascribed to 109 

challenges associated with the complex nature of the phase equilibria between 110 

the  matrix,   and  precipitates, and  phase (at high temperatures) and the 111 

scarcity of kinetic data (i.e., diffusivities/mobilities) and other important input 112 

material properties (e.g., interface energies, bulk free energies of formation) 113 

required for such simulations. Because of such complexity, attempts to develop 114 

models for 718 have typically relied on commercial software packages such as 115 

PanPrecipitation and MatCalc. In view of the current status related to 718, the 116 

current work was undertaken. Its objectives were threefold: (i) develop a fast-117 

acting simulation method to describe the concurrent N&G of  and  precipitates 118 

in 718, (ii) apply engineering-oriented methods to evaluate/obtain input material 119 

properties for the simulations, and (iii) validate the approach using prior 120 
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measurements in the literature and establish the sensitivity of predictions to the 121 

input material properties. The work conducted to meet the objectives is 122 

summarized in the following three sections on model formulation, input 123 

properties, and validation/sensitivity analysis. 124 

II. MODEL FORMULATION 125 

 A model was formulated to treat the concurrent nucleation and growth of 126 

intragranular  and  precipitates in superalloy 718. By and large, it was based 127 

on classical expressions for homogeneous nucleation and diffusional growth, 128 

taking into account the approximate shapes of the precipitates, i.e., disk/oblate 129 

ellipsoid for  and spherical for . Specifically,  precipitates were assumed to 130 

have a diameter/major axis of length L = 2r , thickness/height of e = 2h, and 131 

aspect ratio q = e/L = h/r. The radius of the  precipitates was denoted as r. 132 

Expressions for precipitate coarsening incorporating shape effects were also 133 

used. The key relations describing each phenomenon are summarized below. 134 

A. Nucleation 135 

 The rate of precipitate nucleation, J, was described per the following 136 

relation [15, 33, 34]: 137 

. /t)exp(Jo/t)exp(
T3k

Kr4
exp

Tk

σ

a

KzK2CD
J )(

BB
4
o

*ΔG
2

ττ
*πσ*β

−−= =− . (1) 138 

Here, C and D are the atomic fraction of solute and solute diffusivity in the () 139 

matrix, ao is the average lattice parameter of the matrix and precipitate phases 140 

(taken here to be 0.37 nm),  is the matrix-precipitate interface energy, kB is 141 

Boltzmann’s constant (1.3806 JK-1), T is the absolute temperature, and t is time. 142 
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For the disk-shaped  with its anisotropic surface energy (due primarily to the 143 

tetragonality along the c axis),  pertains to that for the lateral (peripheral) - 144 

interfaces. For the spherical  precipitates,  is taken to be constant over the 145 

entire surface. 146 

The critical radius of the precipitate, r*, depends on , the (chemical) free 147 

energy of transformation G* (taken as a positive quantity), and the elastic strain 148 

energy Gel associated with the difference in lattice parameters of the matrix and 149 

precipitate phases (taken as a negative quantity), i.e.,  150 

el
ΔG*ΔG

2σ
r*

+
= ,        (2) 151 

in which  for  pertains to the energy along the lateral interface as before. The 152 

elastic strain energy (per unit volume of precipitate) Gel for  formation was 153 

estimated from the classic expression derived by Christian [35]: 154 

}{
3
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4

2q

9
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υ
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+
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+
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=     (3) 155 

In Equation (3),  and  denote the average shear modulus and Poisson’s ratio 156 

of the matrix and precipitate,  is an assumed uniform dilation and  is the 157 

tetragonal distortion along the c axis ( ε
T

33
, the stress-free misfit strain along the 158 

c axis, minus /3) . 159 

 The constants K*, Kz, and KG* in Equation (1) represent the ratios of 160 

the frequency factor, Zeldovich non-equilibrium factor, and G* for specific non-161 

spherical nuclei relative to that for a spherical nucleus. For a cylindrical, disk-162 
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shaped nucleus with an aspect ratio q (such as that formed by ), for example, 163 

these constants are as follows [36]:  164 

K* = 0.5 (2q+1)        (4a)  165 

Kz = 2/ q6 )         (4b) 166 

 KG* = 1.5q         (4c) 167 

Similarly, if the  precipitates are considered to have an oblate shape formed by 168 

rotating an ellipse about its minor axis and having a ratio of the lengths of the 169 

minor axis to major axis of q, the analogous expressions are [36]: 170 

K* = 0.5 (1 + 2q - q2)       (5a)  171 

Kz = 
)qq(3

2
2−

        (5b) 172 

  KG* = 0.5 q (3-q2)        (5c) 173 

Values of K*, Kz, and KG* for two values of q (0.5 and 0.333) are compared in 174 

Table I. The results indicate that similar values of KG* and the product K* x Kz 175 

are obtained for a given q irrespective of whether the  precipitate is modeled as 176 

a disk or oblate ellipsoid. In addition, an inspection of Equation (1) reveals that  177 

Table I. Nucleation Rate Factors for Non-Spherical Nuclei 

Factor 
Disk 

q = 0.5 

Ellipsoid 

q = 0.5 

Disk 

q = 0.333 

Ellipsoid 

q = 0.333 

KG* 0.75 0.688 0.5 0.481 

K* 1 0.875 0.833 0.778 

Kz 1.155 1.206 1.414 1.441 

K* x Kz 1.155 1.055 1.179 1.121 
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the factor KG* is most important with regard to the nucleation rate because it 178 

appears in an exponential term.  179 

The nucleation rate J (Equation (1)) is related to the steady-state 180 

nucleation rate Jo through an incubation factor exp(-/t), which quantifies the 181 

transient during which metastable embryos with sub-critical radii are formed. The 182 

time constant  in this term is given by the following equation [34, 37]: 183 

  
σ

τ
D96V

*RTr

M

3
=  .        (6) 184 

R and VM denote the gas constant and the molar volume of the precipitate, 185 

respectively. 186 

In a strict sense, the above equations pertain to two-component alloys. 187 

Methods used to establish effective values for parameters such as C, D, , G* 188 

for use in simulations for 718 are discussed in Section III. 189 

B. Diffusional Growth 190 

 Following nucleation, the diffusional growth of spherical  and 191 

disk/ellipsoidal  precipitates was described using solutions to the one-192 

dimensional diffusion equation. Both approaches were base on the so-called 193 

exact solution developed by Carslaw and Jaeger [38] and Aaron, et al. [39] for the 194 

growth of an isolated spherical particle. 195 

1. Growth of  196 

 Following nucleation, the rate of diffusional growth of a (spherical)  197 

precipitate in a matrix with a finite supersaturation was described by [38, 39]: 198 

 dr/dt = 22D/r .        (7) 199 
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 in which r(t) denotes the  particle radius as a function of time t, D is the 200 

diffusivity, and 2 is the growth-rate parameter, which takes the place of the 201 

supersaturation  found in various solutions to the diffusion equation:  202 

 = (CM – CI)/(CP – CI) .       (8) 203 

CM, CI, and CP comprise the matrix composition far from the matrix-precipitate 204 

interface, the matrix at this interface, and the precipitate at the interface, 205 

respectively. For diffusion-controlled growth, CI and CP denote the equilibrium 206 

matrix and precipitate compositions, respectively. The parameters  and  are 207 

interrelated by 208 

 {2 exp(2)} • [ (exp(-2)) – (1/2erfc())] = /2  ,   (9) 209 

a relation which cannot be inverted to obtain an analytical expression for 2 as a 210 

function of . Therefore, the value of  for a number of closely-spaced values of 211 

 were calculated in the present work, and a sixth-order polynomial was fit to 212 

describe the functional dependence of 2 on .  213 

 For an ensemble of  precipitates, the effect of soft impingement on the 214 

‘far-field’ matrix composition CM was taken into account using the usual 215 

approximation (derived from mass balance considerations 
[40]) which implicitly 216 

assumes a uniform solute concentration in both the particle and the matrix, viz., 217 

 CM = (Co - fC - fC)/(1 - f - f) ,     (10)  218 

Here, Co, C, and C are the compositions of the overall alloy, , and , 219 

respectively, and f and f represent the volume fractions of the respective 220 

phases. As will be described in Section III, the composition of each of the 221 
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precipitate phases was assumed to be constant and thus equal to CP in the 222 

respective equations for the supersaturation (Equation (8)) for a given alloying 223 

element.  224 

2. Growth of  225 

 The diffusional growth of  was modeled in a manner similar to that 226 

described for  in the previous section. The principal difference related to the 227 

morphology of the  precipitates. For simplicity,  particles were assumed to be 228 

oblate ellipsoids having an assumed-constant aspect ratio A = Y/X ~1/q, in which 229 

Y and X denote the semi-lengths of the major and minor axes, respectively.  230 

The diffusion solution for the growth of an oblate ellipsoid of constant 231 

aspect ratio A is the following [41-44]: 232 

Y = 2A(Dt)1/2   and   X = 2(Dt)1/2     (11) 233 

or, 234 

dY/dt = (2A2D/Y)   and   dX/dt = 2 D/X     (12) 235 

As for the growth of spherical particles, the diffusion solution for an ellipsoidal 236 

particle involves a growth-rate parameter denoted as  in Equations (11) and 237 

(12).  is related to the supersaturation  as follows: 238 

 
+−

−
=

=

=

u

u
2/12

22/3

u}u)1A({

du)]u[exp(
]A)][[exp(  .    (13) 239 

Similar to the challenge associated with determining 2() for spherical 240 

precipitates, Equation (13) is not readily inverted to obtain (). Because the 241 

expression involves an integral, a Microsoft Visual Basic program was written to 242 

determine the desired functional dependence [45]. 243 
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To simplify numerical calculations, an artifice (introduced in Reference 45) 244 

was utilized to enable the growth of ellipsoidal  precipitates to be described in 245 

terms of spherical particles with an effective radius reff. The procedure for 246 

defining reff was based on determining the time rate of change of the volume of 247 

the ellipsoidal particle (Ve = (4/3)Y2X). Using Equations (11) and (12), this rate 248 

is readily determined to be the following: 249 

  DXA8
dt

Vd 2e =  .      (14) 250 

The corresponding equation for the volumetric rate of growth of a sphere was 251 

derived form Equation (7) and the relation for the volume of a sphere of radius 252 

reff [Vs = (4/3)(reff)
3], thus yielding dVs/dt : 253 

  
dt

s
dV

= 82Dreff       (15) 254 

Combining Equations (14) and (15), reff is thus 255 

  reff = (A2/2)X        (16) 256 

            = (A/2)Y  257 

The factor A/2 was found to be nearly constant for the range of 258 

supersaturations and typical precipitate geometries (i.e., 2<A<3, or 259 

0.33<(1/A)<0.5) encountered for the diffusional growth of .  In particular, for A = 260 

2, /2 = 0.435, and reff = 0.87Y. For A = 3, /2 = 0.298, and reff = 0.885Y. 261 

Thus, to a good approximation, the growth of ellipsoidal particles can be 262 

simulated in a fashion identical to that used for spherical particles by assuming 263 
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they have an effective radius equal to 0.88 times the length of the semi-major 264 

axis (Y).  265 

C. Coarsening 266 

 Coarsening kinetics are relatively slow and the driving force is relatively 267 

less compared to those for N&G at typical aging temperatures. Therefore, it was 268 

assumed that coarsening of 718 occurred after ~98 pct of the precipitate volume 269 

fraction had been formed and was thus treated to a first order as a distinct (final) 270 

stage in the heat-treatment process. The rate of increase of the average 271 

precipitate size was quantified using the modified LSW theory.  272 

For spherical precipitates such as , the kinetics are expressed as follows 273 

[46-48]: 274 

tKrr
MLSW

3
o

3 =−         (17) 275 

]lnClnv/[1C9RT(C

)VC(1CDf8w(
K

2

M

MLSW

γγγ'

γγγ'

)

σ)

+−

−
=        (18a) 276 

The terms r  and 
o

r represent the average instantaneous precipitate radius and 277 

radius at the end of N&G, respectively. In the equation for the modified rate 278 

constant, KMLSW, w(f) denotes the factor needed to correct for the finite volume 279 

fraction of  particles, C and C’, are the equilibrium concentrations of the rate-280 

limiting solute in the matrix and  precipitate, respectively, and the bracketed 281 

term is the thermodynamic factor in which v is the activity coefficient for the rate-282 

limiting solute in the  matrix. In the present work, the volume-fraction function w 283 

was chosen to follow the form proposed by Voorhees and Glicksman [49], e.g., 284 

w(0.04) ~ 1.23 and w(0.11) ~ 1.6. 285 
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 An identical rate equation pertains to the coarsening of . Taking the 286 

precipitates to be disk shape with an average radius r and aspect ratio of q 287 

(=2h/2r), the pertinent expression for the rate constant KMLSW in Equation 288 

(17) was deduced from the relation of Boyd and Nicholson [50] modified to include 289 

terms (as in Equation (18a) to correct for the finite volume fraction of precipitates 290 

and the fact that the phases are not terminal solid solutions [48, 49]: 291 

]lnClnv/[1CRT(C9

)VC(1CDf16w(
K

2

M

MLSW

γγγ

γγγ

)πq

σ)

+−

−
=




    (18b) 292 

In Equation (18b), C’’ is the equilibrium concentration of the rate-limiting solute 293 

in the precipitate, and the other terms are as defined previously. In particular,  is 294 

the energy along the lateral surface of the - interface. Equation (17) is also 295 

sometimes written in terms of the change in disk diameter L = 2r, in which case 296 

the numerical pre-factor in Equation (18b) is 128/9 instead of 16/9. 297 

 Because Equations (18) were applied to verify reasonable values of an 298 

effective diffusivity, it was necessary to quantify the effect of all solutes on the 299 

coarsening rate constant. In this regard, it has been shown that rapidly diffusing 300 

solutes can also influence the coarsening rate [51]. Based on this prior work, it can 301 

be concluded that the effective rate constant Keff is equal to the inverse of the 302 

sum of the inverse rate constants for each of the individual solutes, i.e.,  303 

...+++=

3
K

1

2
K
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1
K

1
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K

1
       (19) 304 
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III. INPUT DATA FOR SIMULATIONS 305 

 As can be inferred from the discussion in Section II, the simulation of 306 

precipitation for superalloy 718 requires a large number of material parameters. 307 

These include the phase equilibria/phase fractions and phase compositions, G* 308 

and Gel, interface energies, effective diffusivities, etc. for both  and . The 309 

selections of values for these quantities are described in the following sections. 310 

A. Phase Equilibria and Phase Compositions 311 

 Fast-acting simulations of precipitation, such as that developed in the 312 

present work, often rely on measured or calculated phase-equilibria data in the 313 

form of phase fractions as a function of temperature and (assumed constant) 314 

precipitate compositions. Unfortunately, there are wide variations in these 315 

quantities in the literature, some of which have been ascribed to relatively-small 316 

changes in exact alloy composition, changes in the ratio of Al+Ti to Nb contents 317 

(in atomic percent) 
[13, 14] , and the specific characterization method that was 318 

used. Hence, the literature measurements were analyzed to arrive at what can 319 

be considered typical values. Furthermore, as in previous mean-field simulations 320 

of / precipitation in 718 
[29-31], it was assumed that the phases were discrete 321 

entities despite the fact that  particles often include some , thus forming a 322 

composite structure 
[13, 14].  323 

Equilibrium phase fractions as a function of temperature (Figure 1) were 324 

deduced from measurements summarized in References 13, 14, and 52-58. In 325 

deriving this plot, more emphasis was given to direct measurements of the 326 

lenticular phase (taken to be ) and spheroidal phase (assumed to be )  327 
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Figure 1. Equilibrium fractions of the  and  phases as a function of 
temperature. 

observed via transmission electron microscopy or high-resolution scanning 328 

electron microscopy. As pointed out by Lawitsky, et al. 
[58], atom-probe 329 

tomography (APT) tends to exaggerate volume fraction magnitudes unless 330 

careful consideration is given to variations in evaporation rates, mass balance 331 

considerations, etc.   332 

Typical compositions of the overall alloy and the  and  phases are 333 

summarized in Table II. The precipitate chemistries were based on atom-probe 334 

measurements [58, 59], modified slightly to ensure mass-balance consistency with 335 

the overall alloy composition. Using these compositions and an assumed 336 

(approximate) density of ~8300 kg/m3 for each phase, the molar volumes (VM)  337 

Table II. Compositions Used in the Present Work 

Material Fe Cr Mo Nb Ti Al Ni 

Overall (w/o) 20.7 18 3 5.3 0.97 0.57 Bal 

Overall (a/o) 21.5 20 1.76 3.31 1.18 1.24 Bal 

 (a/o) 1.9 2.18 2.0 18.5 4.3 1.2 Bal 

 (a/o) 2.3 1.95 1.1 7.38 7.86 8.95 Bal 
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were estimated to be 7.84 x 10-6 m3 and 6.93 x 10-6 m3 for  and  precipitates, 338 

respectively.  339 

B. Free Energy of Transformation (G*) and Elastic Strain Energy (Gel) 340 

 The free energy of transformation per mole of precipitate (G*) was 341 

estimated using classical expressions from solution thermodynamics [15]. For the 342 

case in which the precipitate is enriched in solute relative to the matrix phase, 343 

G* for  precipitates is given by: 344 

]lnClnv/[1

)/C)RTln(CC(C
)(*G

M

+−

−
−=→

)C(1

''
''     (20a) 345 

A similar relation applies when the precipitate is depleted in solute, i.e., 346 

]lnClnv/[1

)]C)/(1-C)RTln[(1-C(C
)(*G

M

+

−
−=→

C

''
'' .   (20b) 347 

In Equations (20a) and (20b), all of the terms are the same as defined above. 348 

Identical expressions pertain to  precipitates with the exception that C is 349 

replaced by C in all places in the two equations. 350 

 Values of the thermodynamic factor (TF) (based on 351 

CALPHAD/thermodynamic calculations) and G* for each solute in 718 for the 352 

case in which the instantaneous -matrix composition (CM) is equal to the overall 353 

alloy composition (corresponding to the onset of precipitation) are summarized in 354 

Table III. Not surprising, alloying elements which are the most highly partitioned 355 

between the matrix and the corresponding precipitate phase give rise to the 356 

largest values of G* and thus provide the greatest driving force for nucleation. 357 

Specifically, an inspection of the results in Table III shows that Nb and Ti are 358 
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Table III. Values of the Thermodynamic Factors (TF) and G*  

Element TF  G* (J/mol)  G* (J/mol) 

Fe 0.82 399 392 

Cr 0.91 317 3 

Mo 0.92 ~0 ~0 

Nb 1.94 756 271 

Ti 1.30 219 423 

Al 1.25 8 176 

 

most likely the solutes that control nucleation for  and , respectively. 359 

Additional thermodynamic calculations indicated relatively-limited changes in TF 360 

with changes in matrix composition as precipitation progressed, and thus were 361 

neglected in the calculation of G* during N&G simulations. 362 

 The magnitude of Gel during the nucleation of  precipitates is difficult to 363 

quantify because of large changes in the aspect ratio q at small particle sizes [60] 364 

and possible changes in phase composition with growth, factors which are not 365 

treated explicitly in the present approach. Nevertheless, several estimates were 366 

obtained using Equation (3) for two cases, taking  = 62 GPa and  = 0.3 in both. 367 

For the first, it was assumed that the nucleus was essentially equiaxed (q = 1) 368 

and a uniform dilation of 0.0258 (=3x0.0086) pertained [61], thus yielding Gel = 369 

17 MPa. In the other case, it was assumed that the strain field comprised solely a 370 

tetragonal distortion along the c axis of a magnitude suggested by the small-371 

particle data of Sundararaman, et al. [14] (i.e., ~0.01), thereby leading to Gel = 7 372 

MPa. Baseline simulations were thus performed using an average of these two 373 

values, 12 MPa (~94 J/mol). With this specification, the magnitude of the elastic 374 
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strain energy was ~12 percent of the chemical free energy G* (per the Nb value 375 

in Table III) during the early stages of  precipitation. The effect of uncertainty in 376 

the elastic strain energy on simulation predictions is examined further in the 377 

sensitivity analysis in Section IV below. 378 

 Because the misfit between  and the  matrix is relatively small, Gel 379 

was neglected in the  nucleation analysis or assumed to be accounted for via 380 

small adjustments of the - interface energy, a procedure which is typical for 381 

low-misfit   precipitates in PM - nickel-base superalloys. 382 

C. Effective Diffusivities 383 

 Effective diffusivities for the present precipitation analysis were 384 

established based on 718/Rene88DT diffusion-couple data [62], which were tuned 385 

to replicate measured values of the coarsening-rate constant for coherent  and 386 

 precipitates [52, 60]. Diffusivities fitted using measured concentration profiles 387 

developed in 718 at 1423 K are summarized in Table IV [62]. The corresponding 388 

values at the much lower temperatures used for aging of 718 were estimated 389 

Table IV. Experimentally-Fitted Effective Diffusivity of  

Solutes in Alloy 718 at 1423 K (1150 C) [62] 

Element Diffusivity (m2/s) 

Fe 1.56 x 10-14 

Cr 1.58 x 10-14 

Mo 1.66 x 10-14 

Nb 6.69 x 10-14 

Ti 2.02 x 10-14 

Al 1.36 x 10-14 
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using an activation energy (Qd) for each solute of 285 kJ/mol [63] to obtain 390 

expressions for the diffusivity of solute X of the form: 391 

)]
1423

1

T

1
/R)(exp[(QDD dczhX −=         (21) 392 

Here, the coefficient Dczh denotes the pertinent diffusivity at 1423 K in Table IV. 393 

 1. Tuning of diffusivity using coarsening data 394 

An initial attempt to predict observed coarsening rates for  (in terms of L 395 

= 2r) at temperatures of 943 K, 973 K, and 1003 K [60] per Equations (18b) and 396 

(19) was made using (i) the measured diffusivities (extrapolated to the pertinent 397 

temperatures per Equation (21)), (ii) a value of interface energy of 56 mJ/m2 398 

(deduced from initial N&G calculations), and (iii) q ~ 0.32-0.45, the specific value 399 

chosen to be appropriate to the measured size ranges of the coherent 400 

precipitates. This first try yielded predictions that were high by a factor of ~1.6. 401 

After reducing each diffusivity by this amount, approximate agreement with the 402 

measured rate constants was obtained (Table V).  Specifically, for temperatures 403 

of 943 K and 1003 K, the predicted rate constant based on all solutes was 404 

somewhat below the measurement; at 973 K the prediction exceeded the 405 

measurement. With diffusivities fitted thusly, however, the N&G calculations gave 406 

extremely-poor predictions of measured precipitate sizes and transformation 407 

kinetics. 408 

 A considerably better fit of the  coarsening data was obtained by 409 

realizing that the prior diffusivity measurements (Table IV) corresponded to a 410 

situation in which all of the solutes were diffusing in the same direction. Thus, the  411 



 21 

Table V. Predicted Values of the Coarsening Rate Constant  

Kd (in nm3/s) for  as a Function of Temperature*  

Element 943 K 973 K 1003 K 

Fe 0.176 0.588 2.04 

Cr 0.183 0.612 2.13 

Mo 14.6 48.9 169.3 

Nb 0.0421 0.141 0.498 

Ti 0.0739 0.247 0.866 

Al 31.6 105.7 370.7 

All Solutes 0.0206 0.0689 0.242 

Measurement [60] 0.0174 0.083 0.229 

       * All diffusivities multiplied by a factor of 0.625;  = 56 mJ/m2, 
        q = 0.45 (943 K), 0.40 (973 K), or 0.32 (1003 K) 

 
effect of off-diagonal terms in the diffusivity matrix on behavior was not captured. 412 

In particular, the nucleation, growth, and coarsening of  (and ) both involve 413 

diffusion of Cr in a direction opposite to that of solutes partitioning to the 414 

precipitate phase(s). Specifically, a tendency for Cr to partially diffuse down 415 

gradients in Nb, Ti, etc., would result on in an effective diffusivity of Cr that could 416 

be considerably lower. Such a reduction in effective diffusivity, for example, has 417 

been found in the analysis of precipitation and coarsening for various commercial 418 

superalloys and NiAlCr-X single crystals [21, 64].  Based on the initial N&G 419 

calculations, a reduction of the diffusivity of Cr by a factor of 10, without any 420 

adjustment for the other diffusivities, provided excellent agreement between the 421 

measured rate constant for the coarsening of  at 943 K and that predicted 422 

based on all solutes (bold entries in Table VI). For the other two temperatures 423 

(973 K and 1003 K), the measured rate constant was slightly greater than the  424 
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Table VI. Predicted Values of the Coarsening Rate Constant  

Kd (in nm3/s) for  as a Function of Temperature*  

Element 943 K 973 K 1003 K 

Fe 0.281 0.940 3.27 

Cr 0.0293 0.0981 0.341 

Mo 23.4 78.3 270.9 

Nb 0.0805 0.269 0.951 

Ti 0.211 0.707 2.48 

Al 50.6 169.2 593.1 

All Solutes 0.0182 0.0609 0.213 

Measurement [60] 0.0174 0.083 0.229 

        * Chromium diffusivity multiplied by a factor of 0.1;  = 56 mJ/m2, 
     q = 0.45 (943 K), 0.40 (973 K), or 0.32 (1003 K) 

 
Table VII. Predicted Values of the Coarsening Rate Constant  

Kr (in nm3/s) for  as a Function of Temperature*  

Element 973 K 1023 K 

Fe 0.0362 0.193 

Cr 0.00378 0.0201 

Mo 2.98 15.8 

Nb 0.0572 0.313 

Ti 0.00388 0.0209 

Al 0.0102 0.0552 

All Solutes 0.00150 0.00805 

Measurement [52] 0.00261 0.0129 

             * Chromium diffusivity multiplied by a factor of 0.1,  = 40 mJ/m2. 

prediction based on all solutes but less than that based on the single (rate-425 

limiting) solute (Cr) (bold entries in Table VI).  426 

 Using the same adjustment for the diffusivity of Cr, predictions of the 427 

coarsening rate constants for  at 973 K and 1023 K showed good agreement 428 

with the measurements of Han [52] when represented in r3 vs t terms (Table VII). 429 
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At both temperatures, the measured value lay between the prediction based on 430 

all solutes and that based on the rate-limiting solute (Cr), in all cases assuming 431 

an interface energy of 40 mJ/m2.  432 

 2. Off-diagonal diffusivity influence 433 

The efficacy of the above adjustment to the effective diffusivity of 434 

chromium for the interpretation of coarsening observations was rationalized 435 

within the context of the phenomenological (Fick’s-Law) description of diffusion, 436 

which incorporates both diagonal and off-diagonal diffusivity terms. For Cr, this 437 

relation is as follows:  438 

...~~~~ +



−




−




−=

X

C
D

X

C
DX

C
D

AlNi

AlCr,
NbNi

NbCr,

CrNi

CrCr,CrJ     (22) 439 

Here, J
~

Cr
 is the chromium flux, and each of the terms 

X

C
D

iNi

i Cr,



− ~  ( i = Cr, Nb, Al, 440 

Fe, …) denotes the contribution to this flux associated with the diffusivity and 441 

concentration gradient of a given solute i. Thus, positive values of the off-442 

diagonal diffusivities and concentration gradients of a sign opposite to that of Cr 443 

can reduce the overall Cr flux.  444 

 Diffusion couple data for Ni-Cr-Nb, Ni-Cr-Al, and Ni-Fe-Co-Cr alloys [65-68] 445 

provided insight into off-diagonal effects pertinent to the present work. For 446 

example, Xu, et al. [66] found that D
Ni

Nb Cr,

~ at 1273 K was of the order of 4 x 10-15 447 

m2/s for an alloy with comparable matrix composition to that developed in 718 448 

(i.e., 20 a/o Cr and 1.5 a/o Nb). This value is greater than D
Ni

Cr Cr,

~  obtained from an 449 

extrapolation to 1273 K of the measurement of Campbell, et al. [62] per Equation 450 

(21), i.e., 0.92 x 10-15 m2/s. It may thus be surmised that the large Cr 451 
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concentration and hence its larger concentration gradient relative to that of Nb 452 

likely mitigates the tendency for Cr to diffuse down the Nb concentration gradient. 453 

By contrast, Xu et al. [66] found that D
Ni

Cr Nb,

~ was an order of magnitude less than 454 

D
Ni

Nb Cr,

~ . This result, coupled with the high value of D
Ni

Nb Nb,

~  (Table IV) (and perhaps 455 

the influence of other elements diffusing in the same direction), may lead one to 456 

hypothesize a minimum effect of off-diagonal terms on the effective diffusivity of 457 

niobium.  458 

 The off-diagonal effect of aluminum on the diffusion of Cr was quantified 459 

by Nesbitt and Heckel [67]. In this effort, various measurements revealed D
Ni

 AlCr,

~  / 460 

D
Ni

Cr Cr,

~  was of the order of 0.8 to 1.8, but D
Ni

Cr Al,

~  / D
Ni

 AlAl,

~ was only 0.3.  Similar to Nb, 461 

the 718/Rene 88DT diffusion-couple data reported by Campbell, et al. [62], 462 

involved diffusion of Cr in a direction opposite to that of Al, in contrast to its 463 

behavior during the precipitation of . However, due to the formation of 464 

composite / precipitates, the off-diagonal diffusivity of Al likely has limited 465 

effect on the effective diffusivity of Cr, at least for the description of  466 

precipitation.  467 

With regard to the formation of , the low value of D
Ni

Cr Al,

~  / D
Ni

 AlAl,

~  reported 468 

by Nesbitt and Heckel [67]. suggests a limited off-diagonal effect of Cr on Al 469 

diffusion, which is likely already included in the experimental measurement of 470 

Campbell, et al. [62].  Last, the off-diagonal diffusivity D
Ni

Fe Cr,

~  has been determined 471 

to be very small [68]. Because Fe diffused in the same direction as Cr in the  472 

718/Rene 88DT diffusion-couple data, as it does during precipitation heat 473 
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treatment, the diffusivity of Campbell, et al. [62] also likely already includes the 474 

effect of the Fe off-diagonal term on the effective diffusivity of Cr.      475 

D. Interface Energies 476 

 As will be discussed further in Section IV, the interface energy  affects 477 

the nucleation rate to the third power in an exponential term. Therefore, its 478 

precise value has a very significant impact on precipitation kinetics. N&G 479 

simulations with interface energies of 56 mJ/m2 for - and 40 mJ/m2 for - 480 

provided very good agreement with the volume-fraction-versus-time 481 

measurements of Han [52]. The former value for the lateral - interfaces is 482 

comparable to that suggested by Zhang, et al. [30] for 718 (55 mJ/m2) and by 483 

Moore, et al. [27] for alloy 625 (up to 51.8 mJ/m2). The value for - interfaces is 484 

higher than that typically found in the literature for PM - superalloys (i.e., ~23 485 

to 32 mJ/m2) [18, 21, 69], but may be a result of the high niobium content in  in 718 486 

(~7.5 a/o) compared to that in the PM alloys (i.e., ~1 to 2 a/o) [70] or the lower 487 

temperature at which precipitation occurs in 718 compared to that for - 488 

superalloys 489 

IV. VALIDATION AND SENSITIVITY ANALYSIS 490 

A Simulation Approach 491 

 Simulations of the simultaneous nucleation and growth of  and  during 492 

aging of superalloy 718 were performed using a numerical, fast-acting 493 

(spreadsheet) approach. The method, based on the original work of Kampmann 494 

and Wagner [71], was developed and applied previously for describing the 495 

precipitation of  during continuous cooling of the PM superalloy LSHR [21]. In 496 



 26 

brief, the method comprised steps of nucleation and growth that were used to 497 

populate a series of bins, each with a given size of precipitate. For , the solute 498 

controlling nucleation was niobium (Table III); chromium (with its minimum values 499 

of D) was taken to control growth. For , titanium controlled nucleation (Table 500 

III) and aluminum was rate limiting for growth. For both precipitate classes, Ni 501 

was assumed to be the solvent (with an atomic fraction of ~0.5) and the value of 502 

C in the nucleation relation (Equation (1)) was taken to be 0.5.  503 

The time increment for the simulations was chosen to minimize the total 504 

number of bins required. The principal change to the procedure in the present 505 

work related to the coupling of the matrix composition (mass-balance) 506 

calculations (Equation (10)) for the two different phases with one important 507 

exception. Specifically, the precipitation of  involves the rejection of aluminum 508 

which may then contribute to the formation of composite (-) particles [13, 14]. 509 

Therefore, the -precipitation contribution to the aluminum matrix composition in 510 

Equation (10) (needed to simulate the growth of ) was neglected. It was also 511 

determined that the incubation time for nucleation of both  and  (Equation (6)) 512 

was very short (typically of the order of 1 s) compared to the time steps used in 513 

the simulations and was therefore neglected.  514 

 B. Comparison with Experiments 515 

 The present simulations using the baseline material coefficients 516 

summarized in Section III focused on precipitation predictions which were 517 

compared to the observations of Han [52] for a lot of 718 that was super--solvus 518 

solution treated, water quenched, and aged at 973 K. Key predictions comprised 519 
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the temporal variation of the total volume fraction (normalized by the assumed 520 

equilibrium total volume fraction), the average size of the  and  precipitates, 521 

and the volume fraction ratio (f/f). A number of additional simulations of aging 522 

kinetics were also performed and compared to in-situ experimental 523 

measurements (based on dynamic Young’s modulus and neutron-diffraction 524 

techniques), but are discussed in detail in a companion paper [72].  525 

Volume-fraction predictions at 973 K for the baseline input data (smooth 526 

black line in Figure 2a) showed a relatively-good fit with the measurements. In 527 

addition, the predicted average precipitate diameters (converted to disk diameter 528 

from simulations based on the effective radius for  and the directly-simulated 529 

values of 2r for ) for  a time of 25 h (at which the total volume fraction reached 530 

98 percent of the assumed equilibrium fraction) were 28.1 nm for  and 14.3 nm 531 

for  (black curves in Figure 2b). To enable a comparison with the shortest-time 532 

 
 
  
 
 
 
   
 
 
 
 
 
   
 
Figure 2. Fast-acting-simulation predictions of the temporal evolution of (a) the 

normalized total volume fraction, (b) precipitate diameters, and (c) 

ratio of the volume fractions of  and  during aging at 973 K. 
Simulation predictions correspond to the baseline (black curves) or 
modified-baseline (red curves) input datasets. The predictions in (a) 
are compared to measurements by Han [52] (data points).   
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(50-h) measurement reported by Han [52], the predicted diameters were assumed 533 

to increase via static coarsening for an additional 25 h per Equation (17) and the 534 

measured rate constants (Tables VI and VII). The sizes so obtained (30.8 nm for 535 

 and 14.7 nm for ) showed reasonable overall agreement with the 536 

measurements of 25.7 and 14.3 nm, respectively. Last, simulations suggested 537 

that the volume-fraction ratio was initially less than unity, but increased to the 538 

nominal equilibrium ratio at longer times (Figure 2c).   539 

C. Sensitivity Analysis 540 

The sensitivity of the kinetic predictions at 973 K (Section IV.B) with 541 

respect to several key input parameters was assessed via a number of fast-542 

acting simulations. These parameters comprised the values of the interface 543 

energies and diffusivities for both  and , the Gel for the formation of , and 544 

the thermodynamic factor of Nb in nickel solid solution.   545 

 1. Interface energies 546 

The influence of a relatively-small change in interface energy of 1.5 547 

mJ/m2 relative to that in the baseline input dataset (whose magnitude would not 548 

noticeably affect the interpretation of the coarsening results in Tables V, VI, and 549 

VII) on overall aging kinetics (in terms of (f+f)/fequil), the diameter of the 550 

precipitates, and the volume-fraction ratio is illustrated in Figures 3 and 4. For a 551 

variation in - relative to the baseline of 56 mJ/m2, the aging kinetics (Figure 552 

3a) showed a considerable increase or decrease in rate for the lower or higher 553 

values of -, respectively. This dependence can be ascribed to the markedly 554 

enhanced or retarded rates of nucleation, respectively, which in turn led to 555 
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noticeably smaller or larger average diameters of the  precipitates with little 556 

effect on the size of the  precipitates (Figure 3b). (The negligible effect on  557 

diameter was likely related to the modification of the mean field-field matrix-558 

composition for the growth-rate limiting solute for  (i.e., Al) as discussed in 559 

Section IV.A.) Not surprisingly, the enhancement of  nucleation with lower 560 

interface energy was also associated with an initially-higher f/f ratio and a 561 

more rapid approach to the equilibrium value of this quantity (Figure 3c).  562 

When - was decreased or increased by 1.5 mJ/m2 (Figure 4), the 563 

aging kinetics at short times (~0 to 1.5 h) were increased or decreased, 564 

respectively (Figure 4a). At longer times (> 1.5 h), the growth of  likely started 565 

to dominate behavior, and the apparent effect of - was masked, thereby 566 

            

 

 

   

 

 

 

 
 
 
       
 

Figure 3. Fast-acting-simulation predictions of the effect of a 1.5 mJ/m2 

variation in - on the temporal evolution of (a) the normalized total 

volume fraction, (b) precipitate diameters, and (c) ratio of the volume 

fractions of  and  during aging at 973 K. 
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Figure 4. Fast-acting-simulation predictions of the effect of a 1.5 mJ/m2 

variation in - on the temporal evolution of (a) the normalized total 

volume fraction, (b) precipitate diameters, and (c) ratio of the volume 

fractions of  and  during aging at 973 K. 
 
giving rise to a crossover in kinetics. Furthermore, simulations revealed that the 567 

average diameter of  was predicted to increase or decrease with an increase or 568 
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πσ
       (23) 578 

This expression shows that the large influence of  on nucleation rate is 579 

enhanced by its cubic dependence. Despite the fact that some of the uncertainty 580 

in  has been avoided in the present work by ensuring that (long-time) 581 

coarsening observations are independently corroborated, Equation (23) indicates 582 

that small errors in the selection of  can be mitigated (or further confounded) by 583 

corresponding errors in either KG* or, more likely, the free energies in the 584 

denominator because of their square dependence. Uncertainties in G* 585 

(Equations (20a) and (20b)) can be mitigated somewhat by direct measurement 586 

of the enthalpy of transformation (H*) and the determination of the 587 

corresponding entropy (S*) from knowledge of the solvus temperatures, as was 588 

demonstrated in Reference 21. The overlapping of the transformation range of  589 

and , however, tends to complicate the use of this alternate method for 590 

estimating G* of each of the two strengthening precipitates in 718.  Despite this 591 

challenge, research to refine and validate thermodynamic calculations for 718 is 592 

ongoing and will be addressed in a future communication. 593 

 2. Gel and the thermodynamic factor of Nb 594 

Possible errors/uncertainties in Gel for the precipitation of  were 595 

assessed via a separate suite of calculations. In particular, three levels of Gel 596 

were used (17, 25.5, and 70 MPa) which corresponded to elastic deformations 597 

comprising the dilation suggested in Ref. 61 plus a tetragonal distortion along the 598 
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c axis of 0, 0.005, or 0.0227, respectively. The second of the two levels of 599 

tetragonality pertains to that obtained by extrapolating the data in Ref. 14 to the 600 

size of the critical nucleus, and the third is that reported in Ref. 61. Maintaining all 601 

of the other simulation parameters the same as before, predictions of the 602 

normalized volume fraction as a function of time for heat treatment at 973 K 603 

deviated sharply from the measurements and led to predicted  diameters two 604 

or more times as great as the baseline case (for which Gel = 12 MPa). This 605 

trend resulted from a reduction in  nucleation rate due to the reduced net 606 

driving force (G* + Gel). 607 

Three additional cases for which - was reduced in concert with the 608 

above levels of Gel (to reproduce observed transformation kinetics at least 609 

approximately) were also investigated. The required interface energies and 610 

precipitate sizes are summarized in Table VIII. These results indicated that 611 

similar responses in terms of predicted average  size were obtained only for 612 

the cases involving modest decreases in the required level of -  (of the order 613 

of 10 pct.) corresponding to  Gel = 17 and 25.5 MPa. Such decreases would  614 

Table VIII. Sensitivity Analysis for Gel 

Gel 

(MPa) 

- 

(mJ/m
2
) 

 Diameter 
(nm) 

 Diameter 
(nm) 

12 56.0 28.1 14.3 

17 53.8 31.9 14.3 

25.5 49.8 32.6 14.3 

70 25.3 44.6 14.3 

 
 



 33 

require correspondingly small increases in effective diffusivity to maintain 615 

comparable agreement between the predicted and measured rate constants for 616 

the coarsening of  (Table VI).  617 

In contrast to the cases of Gel = 17 and 25.5 MPa, the much more 618 

substantial increase in Gel to 70 MPa would require that the - interface 619 

energy be approximately halved in order to reproduce the observed precipitation 620 

kinetics. However, such a change was predicted to result in an average  621 

diameter substantially higher than the measured value, as shown in Table VIII. It 622 

would also entail a much higher value of effective diffusivity in order to maintain 623 

agreement between the predicted and measured  coarsening rate constants in 624 

Table VI. Hence, it appears that such a high level of Gel for the input dataset is 625 

not appropriate in and of itself.  626 

As suggested by an inspection of Equation (23), one modification to the 627 

baseline input dataset that could offset the high level of Gel does present itself, 628 

however. Specifically, because Gel and G* are of opposite sign, an increase in 629 

the latter would tend to offset the high level of the former. In this regard, 630 

Equations (20a) and (20b) reveal that a reduction in the thermodynamic factor 631 

would increase G*. An analysis of the summary of thermodynamic factors in 632 

Reference 70, and those for Nb in particular, suggests that the present value of 633 

1.94 for this alloying element (Table III) is high, and that a value closer to 1.1 634 

may be more appropriate. A simulation using a so-called modified baseline 635 

dataset incorporating Gel = 70 MPa, this lower value of the thermodynamic 636 
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factor of Nb, and a slightly higher value of - (i.e., 62.3, rather 56, mJ/m2) 637 

gave predictions of the aging kinetics 973 K (red curve in Figure 2a) which 638 

exhibited excellent agreement with the measurements of Han [52]. The predicted 639 

average sizes of  (30.7 nm)  (14.3 nm) were very similar to those from the 640 

simulation with the baseline dataset (i.e., 28.1 nm and 14.3 nm, respectively). 641 

Moreover, the change in the modified baseline input dataset of the 642 

thermodynamic factor of niobium and the value of - did not greatly affect 643 

agreement between measured and predicted coarsening rate constants (Table 644 

IX). The efficacy of this modified dataset was further supported by a comparison 645 

of measured and predicted aging responses over a wide range of temperature, 646 

which is discussed in a companion paper describing in-situ evaluations of 647 

precipitation in superalloy 718 [72]. 648 

Table IX. Sensitivity Analysis for the Effect of the Niobium Thermodynamic 
Factor (TF) on the Coarsening Rate Constant, K (nm3/s)* 

Phase 
Temp 

(K) 
 Nb 
TF 

 
(mJ/m2) 

K (All 
Solutes) 

K (RLS) 
Measured 

K 

 943 1.94 56 0.0182 0.0293 0.0174 

 943 1.10 62.3 0.0225 0.0326 0.0174 

 973 1.94 56 0.0609 0.0981 0.083 

 973 1.10 62.3 0.0751 0.109 0.083 

 1003 1.94 56 0.213 0.341 0.229 

 1003 1.10 62.3 0.261 0.380 0.229 

 973 1.94 40 0.00150 0.00378 0.00261 

 973 1.10 40 0.00152 0.00378 0.00261 

 1023 1.94 40 0.00805 0.0201 0.0129 

 1023 1.10 40 0.00814 0.0201 0.0129 

 * K  Kd () or Kr (); RLS  rate-limiting solute 
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3. Diffusivities 649 

A number of simulations highlighted the effect of changes in the 650 

diffusivities controlling nucleation and subsequent growth for both  (Nb and Cr) 651 

and  (Ti and Al) on kinetic predictions. The effect of increasing/decreasing the 652 

diffusivity on precipitation kinetics was straightforward for cases in which only the 653 

coefficient controlling growth, for example, was changed (e.g., Figures 5, 6). In 654 

particular, an increase/decrease in the diffusivity of chromium 655 

accelerated/retarded predicted precipitation kinetics (Figure 5a), resulted in 656 

larger/smaller  sizes (Figure 5b), and led to a more/less rapid rise in the f/f 657 

ratio (Figure 5c). The corresponding changes for similar levels of 658 

increase/decrease in the rate-limiting solute for growth of  (i.e., aluminum) were 659 

less noticeable, except for the predicted  sizes (Figure 6), largely because of 660 

the smaller volume fraction of this precipitate. Last, the trends were more 661 

complicated for simulations in which the diffusivities of the solutes that control 662 

both nucleation and growth were changed simultaneously. This complexity was 663 

illustrated for cases in which DNb and DCr were both doubled or halved (Figure 664 

7) or DTi and DAl were both doubled or halved (Figure 8).  665 
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Figure 5. Fast-acting-simulation predictions of the effect of a two-fold variation 

in DCr on the temporal evolution of (a) the normalized total volume 

fraction, (b) precipitate diameters, and (c) ratio of the volume fractions 

of  and  during aging at 973 K. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Fast-acting-simulation predictions of the effect of a two-fold variation 

in DAl on the temporal evolution of (a) the normalized total volume 

fraction, (b) precipitate diameters, and (c) ratio of the volume fractions 

of  and  during aging at 973 K. 
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Figure 7. Fast-acting-simulation predictions of the effect of a two-fold variation 

in DNb and DCr on the temporal evolution of (a) the normalized total 

volume fraction, (b) precipitate diameters, and (c) ratio of the volume 

fractions of  and  during aging at 973 K. 
 
 

 

 

 

 

 

 

 

 
 
Figure 8. Fast-acting-simulation predictions of the effect of a two-fold variation 

in DTi and DAl on the temporal evolution of (a) the normalized total 

volume fraction, (b) precipitate diameters, and (c) ratio of the volume 

fractions of  and  during aging at 973 K. 
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V. FUTURE OUTLOOK 666 

 The present work has presented an initial attempt to develop a simple,  667 

engineering-oriented spreadsheet analysis for describing second-phase 668 

nucleation and growth for metallic systems with two precipitating phases such as 669 

superalloy 718 having  and . The approach appears to provide reasonable 670 

descriptions of precipitation kinetics and average sizes of the particles. More 671 

complete validation would be possible with further work to clarify the following: 672 

• Phase equilibria/phase fractions as a function of temperature (and alloy 673 

composition).  674 

• More accurate measurements of phase compositions as a function of 675 

alloy composition and temperature. 676 

• Additional measurements of the off-diagonal diffusivity terms for ternary 677 

and higher-order systems of importance for quantifying the precipitation 678 

kinetics of 718. 679 

• Additional work to verify the precise magnitudes of G* and Gel. 680 

VI. SUMMARY AND CONCLUSIONS 681 

 A fast-acting simulation approach to quantify the precipitation of  and  682 

in superalloy 718 was developed. The applicability of the analysis and 683 

corresponding input material properties were confirmed by replicating selected 684 

nucleation, growth, and coarsening observations in the literature. The key 685 

conclusions from this work are as follows: 686 
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 (1) The processes of nucleation, growth, and coarsening of  and  687 

precipitates are diffusion-controlled, each of whose kinetics can be quantified to a 688 

first order using a single, rate-limiting solute.   689 

 (2) The nucleation of  and  are driven by the partitioning of niobium and 690 

titanium, respectively. 691 

 (3) The growth of disk-like/ellipsoidal  and spheroidal  precipitates can 692 

both be described using an exact solution to the one-dimensional diffusion 693 

equation for the growth of an isolated spherical particle provided (1) the geometry 694 

of   is represented as a sphere with an effective radius that provides the same 695 

growth rate as the corresponding disk/ellipsoid, and (2) the effect of soft 696 

impingement of the concentration fields of adjacent particles is taken into 697 

account. The rate-controlling solute appears to be chromium or aluminum for  698 

and , respectively. 699 

 (4) The coarsening of both  and  are described by classical LSW 700 

theory modified to account for the composition, (finite) volume fraction, and 701 

shape of each phase, the composition of the  matrix, and the thermodynamic 702 

factors of solutes in the matrix. Predicted rate constants based on all solutes or a 703 

single rate-limiting solute bound experimental observations in the literature. 704 
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List of Symbols 
 

A  ratio of length of major to minor axis of oblate ellipsoidal  precipitate 
Aczh  diffusivity at 1423 K per Ref. 62 

ao  lattice parameter 

C   composition (atomic fraction) 

C,  C’’, C’ equilibrium solute concentration in the  matrix and ’/ precipitates  

D   diffusivity 
Deff  effective diffusivity 

f  volume fraction 
J  nucleation rate 
Jo  steady-state nucleation rate 

KMLSW  volume-fraction modified LSW coarsening-rate constant 

kB  Boltzmann’s constant 

K*, Kz, KG* ratios of the frequency factor, Zeldovich nonequilibrium factor, and G* 

for specific non-spherical nuclei relative to those for a spherical nucleus 

q ratio of thickness-to-diameter of disk-like  precipitate 
r  precipitate radius 

reff  effective radius of an equivalent sphere for an ellipsoidal  precipitate 

r*  critical radius of disk or spherical precipitate 
R   universal gas constant 
T  absolute temperature 
t  time 
VM  molar volume 

v  activity coefficient 
V  precipitate volume 
w  volume-fraction function (in relation for coarsening rate constant) 

G*  volumetric (chemical) free energy of transformation 

Gp  elastic (misfit) energy 

H  enthalpy of formation of  

S  entropy of formation of  

  growth-rate parameter for oblate ellipsoidal precipitates  

2  growth-rate parameter for oblate spherical precipitates  

  supersaturation 

-, - precipitate-matrix interface energies 

  tetragonal distortion along c axis of  precipitates 

  uniform dilational strain for of  precipitates 

  shear modulus 

  Poisson’s ratio 

  incubation time constant 
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Table I. Nucleation Rate Factors for Non-Spherical Nuclei 

Factor 
Disk 

q = 0.5 

Ellipsoid 

q = 0.5 

Disk 

q = 0.333 

Ellipsoid 

q = 0.333 

KG* 0.75 0.688 0.5 0.481 

K* 1 0.875 0.833 0.778 

Kz 1.155 1.206 1.414 1.441 

K* x Kz 1.155 1.055 1.179 1.121 

 
 

Table II. Compositions Used in the Present Work 

Material Fe Cr Mo Nb Ti Al Ni 

Overall (w/o) 20.7 18 3 5.3 0.97 0.57 Bal 

Overall (a/o) 21.5 20 1.76 3.31 1.18 1.24 Bal 

 (a/o) 1.9 2.18 2.0 18.5 4.3 1.2 Bal 

 (a/o) 2.3 1.95 1.1 7.38 7.86 8.95 Bal 

 
Table III. Values of the Thermodynamic Factors (TF) and G*  

Element TF  G* (J/mol)  G* (J/mol) 

Fe 0.82 399 392 

Cr 0.91 317 3 

Mo 0.92 ~0 ~0 

Nb 1.94 756 271 

Ti 1.30 219 423 

Al 1.25 8 176 
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Table IV. Experimentally-Fitted Effective Diffusivity of  

Solutes in Alloy 718 at 1423 K (1150 C) [62] 

Element Diffusivity (m2/s) 

Fe 1.56 x 10-14 

Cr 1.58 x 10-14 

Mo 1.66 x 10-14 

Nb 6.69 x 10-14 

Ti 2.02 x 10-14 

Al 1.36 x 10-14 

 
 

Table V. Predicted Values of the Coarsening Rate Constant  

Kd (in nm3/s) for  as a Function of Temperature*  

Element 943 K 973 K 1003 K 

Fe 0.176 0.588 2.04 

Cr 0.183 0.612 2.13 

Mo 14.6 48.9 169.3 

Nb 0.0421 0.141 0.498 

Ti 0.0739 0.247 0.866 

Al 31.6 105.7 370.7 

All Solutes 0.0206 0.0689 0.242 

Measurement [60] 0.0174 0.083 0.229 

       * All diffusivities multiplied by a factor of 0.625;  = 56 mJ/m2, 
        q = 0.45 (943 K), 0.40 (973 K), or 0.32 (1003 K) 
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Table VI. Predicted Values of the Coarsening Rate Constant  

Kd (in nm3/s) for  as a Function of Temperature*  

Element 943 K 973 K 1003 K 

Fe 0.281 0.940 3.27 

Cr 0.0293 0.0981 0.341 

Mo 23.4 78.3 270.9 

Nb 0.0805 0.269 0.951 

Ti 0.211 0.707 2.48 

Al 50.6 169.2 593.1 

All Solutes 0.0182 0.0609 0.213 

Measurement [60] 0.0174 0.083 0.229 

        * Chromium diffusivity multiplied by a factor of 0.1;  = 56 mJ/m2, 
     q = 0.45 (943 K), 0.40 (973 K), or 0.32 (1003 K) 

 
 

Table VII. Predicted Values of the Coarsening Rate Constant  

Kr (in nm3/s) for  as a Function of Temperature*  

Element 973 K 1023 K 

Fe 0.0362 0.193 

Cr 0.00378 0.0201 

Mo 2.98 15.8 

Nb 0.0572 0.313 

Ti 0.00388 0.0209 

Al 0.0102 0.0552 

All Solutes 0.00150 0.00805 

Measurement [52] 0.00261 0.0129 

             * Chromium diffusivity multiplied by a factor of 0.1,  

  = 40 mJ/m2. 
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Table VIII. Sensitivity Analysis for Gel 

Gel 

(MPa) 

- 

(mJ/m
2
) 

 Diameter 
(nm) 

 Diameter 
(nm) 

12 56.0 28.1 14.3 

17 53.8 31.9 14.3 

25.5 49.8 32.6 14.3 

70 25.3 44.6 14.3 

 
 

Table IX. Sensitivity Analysis for the Effect of the Niobium Thermodynamic 
Factor (TF) on the Coarsening Rate Constant, K (nm3/s)* 

Phase 
Temp 

(K) 
 Nb 
TF 

 
(mJ/m2) 

K (All 
Solutes) 

K (RLS) 
Measured 

K 

 943 1.94 56 0.0182 0.0293 0.0174 

 943 1.10 62.3 0.0225 0.0326 0.0174 

 973 1.94 56 0.0609 0.0981 0.083 

 973 1.10 62.3 0.0751 0.109 0.083 

 1003 1.94 56 0.213 0.341 0.229 

 1003 1.10 62.3 0.261 0.380 0.229 

 973 1.94 40 0.00150 0.00378 0.00261 

 973 1.10 40 0.00152 0.00378 0.00261 

 1023 1.94 40 0.00805 0.0201 0.0129 

 1023 1.10 40 0.00814 0.0201 0.0129 

 * K  Kd () or Kr (); RLS  rate-limiting solute 
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Figure Captions 
 

Figure 1. Equilibrium fractions of the  and  phases as a function of 

temperature. 

Figure 2. Fast-acting-simulation predictions of the temporal evolution of (a) the 

normalized total volume fraction, (b) precipitate diameters, and (c) 

ratio of the volume fractions of  and  during aging at 973 K. 

Simulation predictions correspond to the baseline (black curves) or 

modified-baseline (red curves) input datasets. The predictions in (a) 

are compared to measurements by Han [52] (data points).   

Figure 3. Fast-acting-simulation predictions of the effect of a 1.5 mJ/m2 

variation in - on the temporal evolution of (a) the normalized total 

volume fraction, (b) precipitate diameters, and (c) ratio of the volume 

fractions of  and  during aging at 973 K. 

Figure 4. Fast-acting-simulation predictions of the effect of a 1.5 mJ/m2 

variation in - on the temporal evolution of (a) the normalized total 

volume fraction, (b) precipitate diameters, and (c) ratio of the volume 

fractions of  and  during aging at 973 K. 

Figure 5. Fast-acting-simulation predictions of the effect of a two-fold variation 

in DCr on the temporal evolution of (a) the normalized total volume 

fraction, (b) precipitate diameters, and (c) ratio of the volume fractions 

of  and  during aging at 973 K. 

Figure 6. Fast-acting-simulation predictions of the effect of a two-fold variation 

in DAl on the temporal evolution of (a) the normalized total volume 
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fraction, (b) precipitate diameters, and (c) ratio of the volume fractions 

of  and  during aging at 973 K. 

Figure 7. Fast-acting-simulation predictions of the effect of a two-fold variation 

in DNb and DCr on the temporal evolution of (a) the normalized total 

volume fraction, (b) precipitate diameters, and (c) ratio of the volume 

fractions of  and  during aging at 973 K. 

Figure 8. Fast-acting-simulation predictions of the effect of a two-fold variation 

in DTi and DAl on the temporal evolution of (a) the normalized total 

volume fraction, (b) precipitate diameters, and (c) ratio of the volume 

fractions of  and  during aging at 973 K. 


