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Abstract. The first extension of the virtual fields method to the identification of het-
erogeneous stiffness properties from 3D bulk full-field displacement data is presented in
this paper. Data are provided by Magnetic Resonance Imaging (MRI). Two main issues
are addressed: 1. the identification of the stiffness ratio between two different media in a
heterogeneous solid; 2. the identification of stiffness heterogeneities buried in a heteroge-
neous solid. The approach is based on a finite element discretization of the equilibrium
equations. It is tested on experimental full-field data obtained on a phantom with the
stimulated echo MRI technique. The application deals with the characterization of a
stiff spherical inclusion buried within a lower modulus material. Results concerning the
ratio between the modulus of the inclusion and the modulus of the surrounding material
are in close agreement with the reference. Results concerning the reconstructed modulus
distribution across the whole investigated volume are also quite promising. The inclu-
sion location and the ratio of the average moduli are in agreement with the reference.
However, the resulting modulus distribution is highly variable. This is explained by the
fact that the approach relies on a second order differentiation of the data, which tends
to amplify noise. It is eventually proved that noise can be removed by using filtering
algorithms.
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1 Introduction

In medicine, the accurate characterization of stiffness properties inside the human body is essential in

order to detect pathological tissues and diagnose disease [Ophir et al., 2001,Manduca et al., 2001]. This

entails addressing a challenging issue within the field of solid mechanics: the non intrusive identification

of mechanical properties inside a deformable body. This issue can be addressed in many different

ways, all involving the definition of a so-called inverse problem [Bui, 1994, Tarantola, 2005, Bonnet

and Constantinescu, 2005]. Thanks to ultrasound [Ophir et al., 2001, Fehrenbach et al., 2006] and

magnetic resonance imaging (MRI) [MacRobbie et al., 2003,Steele et al., 2000], it is possible to measure

displacement fields in many human tissues. The approaches used to process these full-field data depend

on the way the solid is deformed. Two different ways exist:

– static experiments: the tissue is compressed quasi-statically [Barbone and Gokhale, 2004,Skovoroda

et al., 1995,Skovoroda et al., 1999,Fehrenbach et al., 2006],

– dynamic experiments: a time harmonic excitation made on the boundary creates a time harmonic

shear wave in the tissue [McLaughlin and Yoon, 2004,Weaver et al., 2005,Manduca et al., 2001,

Romano et al., 2001,Liew and Pinsky, 2005,Doyley et al., 2005,Park and Maniatty, 2006].

Many applications use dynamic experiments. The advantage over quasi-static experiments is that

a direct relationship between the measured strains and the unknown moduli can be derived, provided

that only shear waves are present in the tissues [McLaughlin and Yoon, 2004,Park and Maniatty, 2006].

Such a direct relationship is usually not available in static experiments. A map of the quasi-static strain

distribution in tissue reveals not only information about tissue shear modulus distributions, but also

about tissue connectivity (interfaces between tissue components) and other geometrical considerations

at the boundary [Ophir et al., 2001]. Thus, an inverse problem has to be solved for identifying only

tissue shear modulus distributions independently of the boundary conditions [Doyley et al., 2005].

The inversion to obtain stiffness distributions using quasi-static experiments has been solved in

two ways in the literature. The first one is a direct method which was developed by Skovodora et al.

[Skovoroda et al., 1995, Skovoroda et al., 1999] and the solvability was investigated by [Barbone and

Gokhale, 2004]. The principle of this method is to cancel the curl of the equilibrium equations. This

yields a hyperbolic partial differential equation (PDE) with the shear modulus distribution as the

unknown [Skovoroda et al., 1995]. This approach presents some drawbacks, the main one being that it

is required to differentiate at least two times the noise-corrupted displacement fields, yielding artifacts

in the results [Steele et al., 2000]. Alternative formulations of this approach have been proposed

by [Barbone and Oberai, 2007] but they require computing of the gradients of the hydrostatic pressure.

This operation is highly unstable because gradients of the hydrostatic pressure are very small in nearly

incompressible soft tissues, which means that they are experimentally negligible with respect to the

measurement uncertainty, as this will be shown in this study.
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The second method of inversion is based on model updating [Liew and Pinsky, 2005,Doyley et al.,

2005,Fehrenbach et al., 2006]. This approach tends to be computationally expensive since the forward

problem has to be solved repeatedly. Even if the use of an adjoint approach significantly reduces

the computation time, it remains a computationally-expensive method for processing 3D full-field

measurements. Thus, 3D applications of model updating are scarce [Doyley et al., 2005].

In view of all the previous disadvantages, an alternative approach is proposed in this paper. It is

based on a finite element discretization of the governing equations, like the approaches developed in 2D

by [Claire et al., 2004] or [Park and Maniatty, 2006]. The idea here is to devise relevant combinations

of the discretized equations by using the principle of the virtual fields method [Grédiac, 1989,Grédiac

et al., 2006]. Until now, the virtual fields method has been an approach dedicated to engineering

applications dealing with the identification of constitutive parameters of thin plates from 2D surface

full-field kinematic measurements. Since the development of the virtual fields method, the choice of

the virtual fields has been optimized [Avril et al., 2004], making possible the “direct” identification

of stiffness parameters from full-field measurements [Grédiac et al., 2006]. As no iterative solution of

the forward problem is required, this approach seems well suited for processing large amounts of data,

and hence to 3D bulk displacement fields.

This paper presents the first extension of the virtual fields method to 3D bulk full-field displacement

data obtained using the stimulated echo MRI technique [Steele et al., 2000]. The purpose is to determine

3D modulus distributions in solids that are assumed to behave in their linear elastic range. A promising

experimental validation is shown for a cubic specimen containing a spherical inclusion four times stiffer

than the surrounding material.

2 Principle

2.1 General background

2.1.1 Definition of the inverse problem

Let us consider a solid of any shape (Fig. 5.1) whose volume in the undeformed configuration is

denoted Ω. The mechanical behavior of this solid is assumed as linear, elastic and isotropic. In general,

soft tissues in the human body are anisotropic, viscoelastic and nonlinear. However, it is usually

assumed in elastography that they behave as linear, elastic, isotropic materials in order to simplify

the analysis [Ophir et al., 2001, Manduca et al., 2001]. This is a linearized approximation but the

distribution of “secant” moduli across soft tissues subjected to a given loading is of great interest for

physicians to detect pathologies and should be regarded as a challenging target to reach. Therefore,

this justifies the assumption of linear elasticity and isotropy used throughout this paper.

In static neglecting body forces and under the assumption of small perturbations, three sets of

equations can be derived:
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– equilibrium equations:
{

divσ = 0 in Ω
σ.n = T̄ on Sf

(2.1)

– kinematic compatibility equations
{

ε = 1
2 (∇u + ∇tu) in Ω

u = ū on Su
(2.2)

– constitutive equations

σ = Aε in Ω (2.3)

where u denotes the displacement vector undergone by the solid due to external loading, ε the infini-

tesimal strain tensor, σ the Cauchy stress tensor, A the Hooke tensor linking the strains and stresses

and n the outward unit normal vector. Overlined quantities are prescribed as static (T̄ ) or kinematic

(ū) boundary conditions. Let Su be the surface over which kinematic boundary conditions are pre-

scribed and Sf the surface over which static boundary conditions are applied (either external forces

or nothing as in Fig. 5.1). The surfaces Su and Sf are such that Su ∩ Sf = ∅ and Su ∪ Sf = ∂Ω, so as

to support a well-posed set of boundary conditions. ∂Ω denotes the complete surface enclosing Ω.

If the elastic properties are assumed to be isotropic, the components of A may be described in

terms of two independent scalar moduli: Young’s modulus E and Poisson’s ratio ν. Poisson’s ratio

is assumed to be constant across the volume of the solid whereas Young’s modulus is allowed to be

spatially varying (heterogeneous material).

Using the displacement field measurements available across the volume of the solid, the purpose of

this study is both:

– to identify the ratio between the Young’s modulus of different regions in a solid,

– to identify the quantitative modulus distribution in a solid.

2.1.2 Approximation of displacement fields using a basis of piecewise trilinear functions

Let us consider a parallelepiped included in the volume of the solid and across which displacement

field measurements are available (i.e. the domain scanned by the measurement system). The study

will focus on the distribution of Young’s modulus across this parallelepiped.

For solving this inverse problem, the volume has to be discretized. The parallelepiped is partitioned

into Ne brick-shaped finite elements. Then, the displacement fields across the whole parallelepiped are

approximated using the so-called Galerkin approximation [Zienkiewicz, 1977]. It involves replacing the

displacement fields by the following series:

u(x, y, z) ≈
3Nn
∑

i=1

aiΦi(x, y, z) = < Φ(x, y, z) > {a} (2.4)
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where the ai’s denote the nodal degrees of freedom (DoF), Nn the total number of nodes, and the

Φi’s denote basis functions. All the nodal DoF values across the parallelepiped are brought together

as a column vector denoted {a}. All the basis functions values are brought together as a row vector

denoted < Φ >.

The basis functions Φi(x, y, z) (where x, y and z are the usual cartesian coordinates) are equal to

one at precisely one node of the mesh, and precisely zero at all other nodes. Such basis functions are

built up in a piece-wise manner over the brick-shaped finite elements by combining trilinear shape

functions which are only defined within a particular element [Zienkiewicz, 1977].

The components of vector {a} are then identified by a least-squares regression. Indeed, the dis-

placements are measured at a finite number of locations (voxel centers). Let {u} denote the column

vector containing the three components of all the displacement values measured at all the voxels in the

volume scanned by the measurement technique. Afterwards, the displacement field is reconstructed

everywhere across the volume of interest using a linear combination of basis functions. Let [Φ] denote

the matrix containing all the values taken by the basis functions at all the voxel centres. The coef-

ficients of the linear combination have to be determined so that the displacement reconstructed at

the voxel centres matches at best the measured displacement. Therefore, the {a} vector, which is the

solution of the least squares regression problem, can be written:

{a} =
[

[Φ]t[Φ]
]

−1
[Φ]t{u} (2.5)

Accordingly, the size of the finite element mesh must be determined as a function of the spatial

resolution of displacement field measurements. The number of rows in matrix [Φ] must be larger than

the number of columns to ensure the existence of a unique solution to the least squares regression

problem. Thus one may use as many DoFs as there are measured displacement values. It is however

advisable to use significantly fewer DoFs when measurements are noisy for filtering purposes.

2.1.3 Construction of the stiffness matrix

The Young’s modulus is assumed to be constant inside each brick-shaped finite element. Hence, the

inverse problem is reduced to the determination of a vector, denoted {E}, whose components Ek are

the unknown Young’s moduli of all the finite elements.

The stiffness matrix of a single brick finite element ek can be written:

[Kk] = Ek

∫

ek

[∇Φ][C][∇Φ]dV (2.6)

where [∇Φ] is a matrix featuring the gradient of the basis functions of the < Φ > row vector. [C] is

a matrix that only depends on Poisson’s ratio [Zienkiewicz, 1977]. Indeed, for an isotropic material,

Young’s modulus may be factored out of the Hooke matrix yielding an alternate form of Hooke’s law:
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The global stiffness matrix of the whole parallelepiped, denoted [K], is constructed by assembling

all the elementary stiffness matrices:

[K] =

Ne
∑

k=1

Ek[Kk] (2.8)

Let us now write the equilibrium equations of the whole parallelepiped [Zienkiewicz, 1977]. Knowing

the vector of nodal forces, denoted {b}, the following equation must be verified by the Ek:

[K]{a} =

Ne
∑

k=1

Ek[Kk]{a} = {b} (2.9)

where the {a} vector of nodal DoFs is the one derived from the least squares regression of experimen-

tally measured displacements according to Eq. 2.5.

2.1.4 Elimination of unknown reaction forces

Nodal forces in a finite element may be separated into internal body forces and external forces

[Zienkiewicz, 1977]. Here, the body forces are neglected. Therefore, in Eq. 2.9, all the nodal forces

cancel out except at the nodes located over the boundary of the parallelepiped where the reaction

forces are unknown. Thus, vector {b} can be split up in two sub-vectors, one containing all the known

components, which are all zeros, and one containing the unknown components, denoted {F}. The

number of unknown components is denoted Nf . Those unknown nodal forces are removed from the

equations. After this operation, the number of remaining equations is Ne − Nf . Similarly, all vectors

are split up into two sub-vectors, and all matrices are split up into four sub-matrices, such as:

{a} =

{

{U}
{V }

}

{b} =

{

{0}
{F}

}

[K] =

[

[K] [L]
[R] [Q]

]

[Kk] =

[

[Kk] [Lk]
[Rk] [Qk]

]

Accordingly, the following equation must now be satisfied by Ek:

[K]{U} + [L]{V } =

Ne
∑

k=1

Ek[Kk]{U} +

Ne
∑

k=1

Ek[Lk]{V } = {0} (2.10)

It is assumed that the modulus is known (or a given relative value is imposed) over N brick elements,

with N > 0. Thus, the Ne − N modulus values that remain must satisfy:
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Ne−N
∑

k=1

Ek{ [Kk]{U} + [Lk]{V } } = −
N

∑

l=1

Ẽl{ [Kl]{U} + [Ll]{V } }

⇔ [A]{E} = {B} (2.11)

where the Ẽk are the values of the known or imposed moduli. Eventually, the size of matrix [A] is

(3Nn − Nf ) × (Ne − N). If N=0, {B} is the null vector because the nonzero nodal force have been

removed from the equations as they cannot be measured in practice. Therefore, one ends up with a

singular system of equations. Consequently, at least one value of the moduli must be known or imposed

(N > 0) for solving the equations and find a relevant solution. Nevertheless, in practice, increasing

N means decreasing the number of unknowns but keeping the same number of equations. Thus, the

redundancy of the equations is increased and consequently, the filtering of noise will be improved. It will

be shown further that robustness issues are crucial within the identification of modulus distribution.

Therefore, it is recommended to use the largest possible value for N .

2.1.5 Physical interpretation of the equations

Eq. 2.10 can be interpreted quite simply in a one-dimensional (1D) solid discretized with spar elements

as in Fig. 5.2. Spar elements have linear shape functions and each node has only one DoF: the trans-

lation in the direction parallel to the bar. This means that the only component of the strain tensor,

denoted ε here, and the only component of the stress tensor, denoted σ here, are constant along each

spar element.

The principle of Eq. 2.10 is to ensure that the equilibrium condition is satisfied, like in the so-called

“equilibrium gap method” [Claire et al., 2004]. The equilibrium equations are particularly simple in

1D. The equilibrium equation means that the nodal force F at node xn must be zero (Fig. 5.2). The

nodal forces depend on the stress increment between the consecutive spar elements, which can be

related to the increment of the displacement between two consecutive nodes. Therefore, the following

equations can be developed:

F (xn) = 0 ⇒
σ(Xn+1) − σ(Xn)

Xn+1 − Xn

= 0

⇒ σ(Xn+1) − σ(Xn) = 0

⇒ E(Xn+1)ε(Xn+1) − E(Xn)ε(Xn) = 0

⇒ E(Xn+1)
u(xn+1) − u(xn)

xn+1 − xn

− E(Xn)
u(xn) − u(xn−1)

xn − xn−1
= 0

(2.12)

yielding:

[u(xn+1) − u(xn)]E(Xn+1) − [u(xn) − u(xn−1)]E(Xn) = 0 (2.13)
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The latter equations give a relationship between the modulus E of two consecutive elements. It is

the discretized form of the following differential equation:

∂

∂x

(

E
∂u

∂x

)

= E
∂2u

∂x2
+

∂E

∂x

∂u

∂x
= 0 (2.14)

If Eq. 2.13 is developed across all the spar elements, one obtains a system of equations involving all

the moduli of all the elements.

The derived system of equations is ill-conditioned because it is the discretized form of a differential

equation involving a second-order differentiation of the displacement field (Eq. 2.14). Computing the

second-order derivatives of noisy data yields poorly conditioned system of equations when it is solved

numerically. Consequently, if a small error is added to the coefficients of the system, large errors result

in the solution. Therefore, we expect this approach to be sensitive to noise.

Similar instability is also to be expected when solving Eq. 2.10 because it is the extrapolation of

Eq. 2.13 into 3D. The difference is that, in Eq. 2.13, the equilibrium condition at each node yields three

equations because the nodal force has three components: Fx, Fy and Fz. In 3D, each equation gives

a relationship between the moduli of the eight finite elements surrounding each node. This results in

a large system of equations that corresponds to the discretized form of three PDEs involving the first

order derivatives of the displacement field. Regularizing approaches exist for improving the stability

of the solution [Tikonov and Arsenin, 1977], but they are not investigated here because they require

relevant a priori information which is not within the scope of this paper.

2.2 General solution of the inverse problem

The system of equations derived in Eq. 2.11 is an overdetermined system of equations. There are more

equations than unknowns because the equilibrium condition at each node yields three equations. The

resolution of this system of equations using weighted least squares was investigated in [Claire et al.,

2004]. A resolution based on the virtual fields method is considred in this study.

2.2.1 Modulus ratio identification

For the sake of simplicity, let us consider the case where the investigated solid is composed of only two

different materials. Thus, only two different values are possible for the modulus in each finite element.

A value of one is prescribed for the finite elements which are known to be located in the first material,

called the reference material. An unknown value, denoted Ě, is prescribed for the finite elements which

are known to be located in the other material, called the unknown material. Ě therefore represents

the ratio between the modulus of both materials.

Accordingly, Eq. 2.11 can be modified to:
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Ě
∑

unknown

{ [Kk]{U} + [Lk]{V } } = −
∑

reference

{ [Kk]{U} + [Lk]{V } } (2.15)

This overdetermined system of equations is solved by multiplying it with a suitable column vector,

denoted {U∗}. This column vector features the nodal DoFs of a piecewise virtual displacement field

[Toussaint et al., 2006]. Finally, the following solution is obtained:

Ě =

{U∗}t
∑

unknown

{ [Kk]{U} + [Lk]{V } }

{U∗}t
∑

reference

{ [Kk]{U} + [Lk]{V } }
(2.16)

Algorithms have been developed in 2D for providing optimal virtual fields [Avril et al., 2004].

However, they require the inversion of large matrices which is computationally expensive when 3D

data are processed. Therefore, an intuitive guess for vector {U∗} is the simplest solution here. An

example will be given in section 3.

2.2.2 Modulus distribution identification

When the structure is composed of several different materials, or when the structure of the inves-

tigated solid is unknown, the system of equations in Eq. 2.11 must be solved directly without any

simplifications, such as the one in Eq. 2.15.

In Eq. 2.11, the number of unknown modulus values is assumed as lower than the number of

equations for ensuring uniqueness of the solution. This is the most likely situation as three independent

equations are derived from the equilibrium written at each single node. This overdetermined system is

solved by multiplying it with a suitable set of column vectors, featuring the nodal DoFs of piecewise

virtual displacement fields [Toussaint et al., 2006]. A good choice from a numerical perspective [Avril

and Pierron, 2007] is to use vectors that can be written in the form:

{U∗} = [α]{ [Kk]{U} + [Lk]{V } } (2.17)

where [α] is a positive definite matrix and k varies between 1 and Ne − N . The size of matrix [α] is

(3Nn − Nf ) × (3Nn − Nf ).

Such a choice for the column vectors provides a system of equations that can be written:

[

[A]t[α][A]
]

{E} = [A]t[α]{B} (2.18)

where [A] and [B] have been defined in Eq. 2.11.
[

[A]t[α]−1[A]
]

is a large matrix that has the interest-

ing property of being symmetric positive definite. As [A] is also sparse if [α] is well chosen, iteratively

solving Eq. 2.18 by the conjugate gradient method is now possible [Brodie, 1977]. This provides a

significant computational acceleration, allowing, for example, one million modulus values to be calcu-

lated in less than 10 minutes. Therefore, the volume of interest can be refined in order to obtain an

acceptable spatial resolution for the modulus variation across the volume of the investigated solid.
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2.2.3 Derivation of matrix [α]

The solution of Eq. 2.18 can be interpreted as the weighted least-squares solution of equations 2.11,

used for example in the “equilibrium gap method” [Claire et al., 2004]. It consists of minimizing the

following cost function:

ϕ({E}) =
1

2
{ [A]{E} − {B} }t

[α] { [A]{E} − {B} } (2.19)

where [α] is a matrix used to minimize the effect of noise in the data [Tarantola, 2005]. A larger weight

is given to nodes and components where the confidence on the data is high and a lower weight where

the confidence is small. The evaluation of the confidence level depends on the data themselves and

it is different from one application to another. An example will be given in section 3. Because [α] is

usually a sparse matrix, the conjugate gradient method may be used to solve Eq. 2.18.

2.3 Solution of the inverse problem for nearly incompressible materials

Most human soft tissues are almost incompressible [Ophir et al., 2001]. Although our approach is

applicable to all types of material, if the Poisson ratio is very close to 0.5, some components of the

Hooke matrix in Eq. 2.7 will tend towards infinity. Accordingly, the application of our approach to

this example is somewhat more complex than the general case but it will be shown that this situation

can still be handled.

For nearly incompressible materials, Poisson’s ratio is close to 0.5. Accordingly, Eq. 2.7 can be

modified into the following equation if the material is assumed incompressible linear elastic [Barbone

and Gokhale, 2004]:
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


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

















(2.20)

where p is the hydrostatic pressure variation and G is the shear modulus.

In a solid, the hydrostatic pressure variation can be related to the relative volume variation dV

according to:

p = κ
dV

V
(2.21)

where κ is the bulk modulus, which is almost uniform in human tissues, close to the bulk modulus of

water [Manduca et al., 2001].

The relative volume variation can be approximated to first order by the sum of the three diagonal

components of the infinitesimal strain tensor:
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dV

V
= Tr(ε) = εxx + εyy + εzz (2.22)

In nearly incompressible materials, Tr(ε) is negligible compared to any component εij of the strain

tensor. Therefore, as both κ and Tr(ε) have negligible variations across the volume of human tissues, the

gradient of the hydrostatic pressure may be neglected. Such an assumption was actually proved to be

too restrictive for nearly incompressible materials subjected to time-harmonic loadings at a frequency

of 150 Hz [Park and Maniatty, 2006]. However, the effect of acceleration forces could account for the

existence of non negligible gradients of the hydrostatic pressure in dynamics. Results shown further

will prove that neglecting gradients of the hydrostatic pressure in quasi-static is relevant.

Assuming negligible gradients of the hydrostatic pressure, it can be shown that the hydrostatic

pressure will not be involved in the equations. Indeed, let us consider a virtual displacement field,

denoted u∗, which is null over the whole boundary of the solid (like all the virtual displacement fields

introduced previously). Integrating by parts the virtual work created by the hydrostatic pressure terms,

one gets:

∫

Ω

< ∇u
∗ >































p
p
p
0
0
0































dV = −

∫

Ω

u
∗.∇p dV + p

∫

∂Ω

u
∗ dS = 0 (2.23)

Therefore, p is not involved in the virtual work for a virtual field that is null at the boundary.

As this is the case for the virtual fields that yield Eq. 2.11 or Eq. 2.15, the hydrostatic pressure is

not involved in Eq. 2.11 and Eq. 2.15. Thus, only the G-dependent part of the elementary stiffness

matrix derived from Eq. 2.6 is needed to construct the global stiffness matrix, denoted [K•]. The novel

elementary stiffness matrix can be written:

[K•

k] = Gk

∫

ek

[∇Φ][∇Φek ]dV (2.24)

where Gk is the shear modulus of the current finite element. Thus, the unknowns for the problem

defined here will be the values of the shear modulus instead of the values of Young’s modulus. For an

incompressible material, the two are related through E = 3G. The vector of unknown shear moduli,

denoted {G}, will satisfy similar equations to Eq. 2.11 and Eq. 2.15:

– for the modulus ratio identification:

Ǧ
∑

unknown

{ [K•

k ]{U} + [L•

k]{V } } = −
∑

reference

{ [K•

k ]{U} + [L•

k]{V } } (2.25)
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– for the shear modulus distribution:

Ne−n
∑

k=1

Gk{ [K•

k ]{U} + [L•

k]{V } } = −
n

∑

l=1

G̃l{ [K•

l ]{U} + [L•

l ]{V } } (2.26)

The only differences compared with Eq. 2.11 and Eq. 2.15 come from the different definition of

stiffness matrices ([K•

k] from Eq. 2.24 rather than [Kk] from Eq. 2.6).

3 Application to experimental data

3.1 Experimental techniques and specimen

Our approach was applied to the experimental data presented by [Steele et al., 2000]. The experi-

ments were performed on a phantom containing a inclusion four times stiffer than the background.

The specimen has a 80×64×154 mm3 parallelepipedic shape and the inclusion is a 25 mm diameter

sphere (Figure 5.3). Semicosil 921 silicone gel (Wacker Silicones Corporation, Adrian, MI) was used

to construct the phantom qualitatively simulating the mechanical properties of soft human tissues. It

was checked using standard uniaxial tension [Steele et al., 2000] that this material has a linear elastic

isotropic behaviour and is nearly incompressible.

The phantom was placed between two acrylic plates in a pneumatically driven device. A vertical

deformation of approximately 6 mm, or about 7.5 % average strain, was applied. A stimulated echo

MRI sequence using displacement encoding gradient pulses was employed to measure the phantom’s

internal static displacements [Chenevert et al., 1998]. The purpose of this paper is not to present this

technique which was detailed in [Steele et al., 2000]. Let us just give the following basics about MRI.

MRI is an imaging modality which is primarily used to construct pictures of the Nuclear Magnetic

Resonance (NMR) signal from the hydrogen atoms in an object. NMR is a fundamental property of

nature possessed by protons, which is induced by pulses of magnetic field applied to the object. Varying

gradients of magnetic fields, each voxel of the object can be encoded with different frequencies and

phase angles. Therefore, the spectrum of the NMR signal collected by a receptor (coil) is affected by

the applied gradients. A simple Fourier transform is capable of positioning the signal in the right voxel.

However, the Fourier transform of a real number is a complex number. The magnitude of this complex

number (magnitude of the MR signal) usually provides nice maps of the object topography [MacRobbie

et al., 2003]. The phase angle of this complex number can be used as well to measure motions like

blood flows [MacRobbie et al., 2003] or displacement fields [Steele et al., 2000]. It requires particular

pulses of the magnetic fields, like the ones used in the sequence presented in [Steele et al., 2000].

Using this sequence, 256×256×64 matrices of data were obtained, covering a 110×80×75 mm3 field

of view. Only a 50×50×42 mm3 field of view, covered by a grid of 116×142×37 voxels, was kept around
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the inclusion because the data outside this volume were missing or were too noisy. The resulting phase

maps in this 50×50×42 mm3 region of interest were unwrapped using a temporal unwrapping approach

explained by Huntley and Saldner [Huntley and Saldner, 1993]. Once unwrapped, the phase maps were

multiplied by the respective sensitivity factors in order to get the displacement maps (Figure 5.4).

Using high pass filters, the uncertainty of the displacement fields induced by the measurement noise

was assessed. It is about 0.03 mm.

A 9×9×1 median filter kernel (only averaging within the slices) was applied to the unwrapped

phase maps for reducing the noise level and eliminating inconsistent values (outliers). The uncertainty

of displacements after filtering is about 0.004 mm.

3.2 Constitutive equations for the tested material

The 50×50×42 mm3 volume of interest was meshed using 53×66×36 brick-shaped finite elements for

the identification. The DoFs at the nodes are identified by least-squares regression. These DoFs are

used to derive the strain values at the centre of each of the 53×66×36 brick-shaped finite elements by

using a centred finite difference scheme. One obtains a 3D array of 53×66×36 mapping a volume of

50×50×42 mm3. Therefore, the “strain gauge volume” is 0.94×0.76×1.2 mm3. However, this is without

taking account of the 9×9×1 median filter which was applied onto the initial 116×142×37 array of

displacement data. Taking account of it, the gauge volume is actually: 4.2×3.4×1.2 mm3. Within each

of these volumes, strains are measured with an uncertainty of about 0.004. This uncertainty has been

deduced from the uncertainty of displacements given in the previous section.

The obtained εxx and εyy fields, as well as the sum of the three diagonal components of the strain

tensor: εxx + εyy + εzz=Tr(ε) have been plotted across a given cross section at x=0 in Figure 5.5. The

material investigated in this study is almost incompressible. Indeed, for the example addressed here,

it can be checked that Tr(ε) is negligible compared to εxx or εyy. Only noise is remaining in the field

Tr(ε), which has the same range order as the strain uncertainty, estimated at about 0.004. Due to this

property, it can be assumed that the investigated material is incompressible. Thus, its Poisson’s ratio

is close to 0.5 and the modified approach described in Section 2.3 can be applied.

3.3 Identification of the stiffness ratio between both media

The 50×50×42 mm3 volume of interest was meshed using 53×66×36 brick-shaped finite elements for

the identification. The DoFs at the nodes are identified by least-squares regression.

The elements located inside the inclusion have been detected using the magnitude of the same MR

signal as the one used for measuring the displacement fields. The magnitude of an MR image depends

primarily on T1, T2, and proton density, and is generally not related to the mechanical properties of the
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imaged object [MacRobbie et al., 2003]. However, in the magnitude images (Figure 5.6) the inclusion

is clearly seen due to the inherent T1 and T2 contrast of the stimulated echo sequence.

A Matlab function has been developed for estimating an ellipsoidal contour round a 3D region of

distinctly higher or lower signal strength (magnitude of the MR signal in this case) than that in the

background region of interest. This contour is characterized by six geometric parameters (x0, y0 and

z0 for the center, rx, ry and rz for the size) defining the ellipsoid as those pixels for which:

(x − x0)
2

r2
x

+
(y − y0)

2

r2
y

+
(z − z0)

2

r2
z

≤ 1 (3.1)

An ellipsoidal description of the inclusion is used instead of a spherical one because the voxels do

not have a cubic shape (the 50×50×42 mm3 field of view is covered by a grid of 116×142×37 voxels).

By applying this Matlab function to the magnitude field, all the finite elements which have their

centroid located inside the inclusion have been detected. This information is used to complete Eq. 2.16

where the “reference” becomes the background material and the “unknown” becomes the inclusion.

Accordingly, the ratio can be written:

Ǧ =

{U∗}t
∑

inclusion

{ [K•

k ]{U} + [L•

k]{V } }

{U∗}t
∑

outside

{ [K•

k ]{U} + [L•

k]{V } }
(3.2)

The components of vector {U∗} are defined across the whole measurement volume. Accordingly,

they are defined as a polynomial function. They have been chosen as:

u
∗ =







0
(x − L/2)(x + L/2)(y − l/2)(y + l/2)(z − h/2)(z + h + 2)
0







(3.3)

This choice has been made for the following reasons:

– the virtual field is zero across the whole contour of the volume of interest, which makes the identifi-

cation insensitive to the unknown distribution of tractions at the boundary because all the nonzero

components of vector {b} in Eq. 2.9 are multiplied by zero with such a choice of {U∗}.

– only u∗

y is nonzero (u∗

x=u∗

z=0). It means that the x and z components of nodal forces are multiplied

by zero in the equation of the principle of virtual work. This is equivalent to saying that the x and z

components of nodal forces are not considered. Consequently, only the y component of nodal forces

is considered in the equations. If one refers to the equilibrium equations, the y component of nodal

forces is the only of the three classical equilibrium equations to involve σyy. As y is the direction

of loading, σyy is the largest stress component. Therefore, it is the one that provides the highest

sensitivity to the modulus variations. The two other equilibrium equations involve marginal stress

components in this test and this is the reason why they are not considered.
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– Among all the virtual fields that verify the two previous conditions, the one which has the lowest

gradients is sought, according to the study of noise sensitivity presented in [Avril et al., 2004]. The

polynomial function which satisfies the two previous conditions and which has the lowest gradients

may be written as in Eq. 3.3 (polynomial with the lowest possible order).

When applied to the experimental results with 53×66×36 brick elements and the previous virtual

field (Eq. 3.3), Eq. 3.2 gives: Ǧ = 4.2. This is in agreement with the reference value of 4 (Tab. 5.2)

and therefore appears very promising for further applications of our approach.

The remaining difference may be due to measurement errors and the assumptions made here (the

main ones being: neglecting the gradient of the hydrostatic pressure and neglecting geometric non-

linearities induced by the large deformation [Skovoroda et al., 1999]). Moreover, the accuracy of the

detection of the boundary separating the two materials also affects the results. An error of 1% in

the diameter of the inclusion results in an error of 20% in the modulus ratio. Therefore, even if the

possibility to characterize this ratio is a real asset, it can only be used to complete the information

provided by the modulus distribution, as shown in the following section.

3.4 Identification of the modulus distribution

The 50×50×42 mm3 volume of interest was again meshed using 53×66×36 brick-shaped finite ele-

ments. Here, the modulus was assumed to be known only on the boundary of the volume of interest.

The same assumption was used by [Steele et al., 2000]. Thus, 51×64×34=110976 values are unknown

inside the volume of interest. The modulus of the boundary elements was set to unity, i.e. {G̃l}, to

get a relative value of the moduli inside the specimen.

500 iterations of the conjugate gradient method were used to solve the system of equations (2 minutes

using a Pentium M processor, 1400 MHz).

The [α] matrix was chosen to give zero weight to the nodal forces in the x and z directions and

uniform weight to the nodal forces in the y direction. We used a zero weight in the x and z directions

because we wanted to involve only σyy in the equations. As y is the direction of loading, σyy is the

component of stresses for which the noise affects the least the equations. The uniform weight in the

y direction has been chosen because the equilibrium equation that involves the σyy component is

assumed to have the same reliability everywhere across the field.

Reconstruction results are presented in Figure 5.7a. As there are 36 finite elements along the z

direction, each plane passing through one of the centroids of these finite elements represents a cross

section where a 53×66 matrix of results is available. All of the 53×66 result matrices across all 36

cross-sectional planes are plotted in the same picture, starting from the x=-20.4 mm plane on the

top left to the x=20.4 mm plane on the bottom right in Fig. 5.7. This plotting scheme allows one to

visualize the three-dimensional results.
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It can be noticed in the results that the highest modulus values delimit a volume (Figure 5.7a) that

is similar to the actual volume of the inclusion (Figure 5.7b). The reference region occupied by the

inclusion in Figure 5.7b has been determined from the magnitude of the MR signal. Tab. 5.1 presents

the reference ellipsoid boundaries identified from the signal magnitude and the reconstructed modu-

lus distribution. These ellipsoids are similar within a voxel. This proves that the identified modulus

distribution is in close agreement with the actual one from a qualitative point of view.

Concerning the quantitative results, the average value of the modulus identified in the surrounding

material is 0.69 and the average value of the modulus identified in the inclusion is 2.98. Thus the ratio

between both modulus values is 4.3. This is in agreement with the ratio of 4.2 identified in Section 3.3.

This is also in agreement with the reference value of 4 (Tab. 5.2)

The main source of errors in Fig. 5.7a seems to be the noise in the experimental data. The standard

deviation of the results is 1 in the region of the inclusion and 0.4 in the surrounding material. This

means that the coefficient of variation (ratio between the standard deviation and the average) is 33%

in the region of the inclusion and 57% in the surrounding material. It is worth recalling that the

results shown in Figure 5.7a were not obtained from raw displacement data, but from data filtered

using a median filter with a kernel size of 9×9×1. The effect of filtering on the reconstruction has been

investigated and results are reported in Tab 5.3. Different kernel sizes were tried out, ranging from

1×1×1 (no filtering) up to 10×10×1. For each set of filtered data, the same identification algorithm

based on the virtual fields method was applied for reconstructing the modulus distribution. From the

reconstructed modulus distribution, for all the different tested filtering kernel sizes, the boundary of

the inclusion was traced and the average of the modulus both in the inclusion and around was derived.

Then the ratio of both averages was computed. It was shown that the identified ratio varies. It first

increases and then stabilizes for kernel size larger than 4×4×1. It means the median filtering with

a kernel size 9×9×1 (the one used to provide the distribution of Figure 5.7a) does not disturb the

accurate detection of the edges of the inclusion. But it provides a less scattered distribution than kernel

size 4×4×1 (see the standard deviations reported in Tab 5.3), justifying its use in practice.

Although a value of 1 has been imposed to the boundary, only an average value of 0.69 is found

in the surrounding material. Actually, in Fig. 5.7a, it can be noticed that the modulus distribution

in the background is not homogeneous. Low values of the modulus (below the average value of 0.69)

alternate with higher values of the modulus (above the average value of 0.69). These artifacts, which

look like “waves” enveloping the inclusion in Fig. 5.7(a) are likely to be numerical. Indeed, the system of

equations 2.18 is only solved approximately here using the conjugate gradient method. The conjugate

gradient method is interrupted after only 500 iterations so as to reduce noise in the solution, because

the fewer the number of iterations, the smoother the solution. Accordingly, 500 iterations was found as

a good compromise between this smoothing effect and the convergence of the algorithm. For a number

of iterations ranging from 100 to 1000, the modulus distribution was reconstructed and the modulus
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averages and standard deviations were derived both in the inclusion and in the surrounding material

(Tab 5.4). It was shown that the identified averages vary, and so do the standard deviations. The ratio

of both averages first increases and then stabilizes for a number of iterations larger than 500. But

increasing the number of iterations beyond 500 still increases the standard deviation. Therefore, 500

can be considered here as the optimal number of iterations.

4 Discussion

4.1 Analysis of the sensitivity to noise

The scatter in the reconstruction results is likely induced by the noise amplification of the ill-conditioned

equations 2.26. As explained in Section 2.1.5, a small error in the coefficients of the matrix can induce

large errors in the results [Tarantola, 2005].

To evaluate the noise amplification a model of a homogeneous solid having the same size as the one

investigated here was subjected to a uniaxial tensile test. Thus, εxx, εyy and εzz are constant, with

εyy= ε, εxx= εzz= -0.5 ε and εxy=εxz=εyz=0.

Those values were directly prescribed at the centroid of each finite element in order to build up the

system of equations 2.26. Then, a Gaussian white noise (Standard Normal distribution), multiplied by

a scaling factor of η = ε/100, was added to all the components of the strain tensor. The system of

equations of Eq. 2.26 was then solved with the noisy values of the strain tensor.

The resulting modulus variation identified using this system of equations is similar to white noise

(Figure 5.8), with a standard deviation of 0.22. This means that the amplification factor is about 20

between the coefficient of variation of noise in the strain fields and the coefficient of variation of the

relative modulus error.

The average strain in the direction of loading is 7.5%, which means that the solid could not be more

deformed within its elastic range. Therefore, it is not possible to decrease the coefficient of variation

of noise in the strain fields. One has to focus on the amplification factor to decrease the scattering of

the results.

Smoothing the results appeared as the most efficient way of removing the noise. A 5×5×1 median

filter kernel (only averaging within the slices) was applied to obtain the results shown in Figure 5.9.

The amplification factor was divided by 5, which looks evident in the figure. After smoothing, the ratio

between the average value of the modulus identified in the surrounding material and the average value

of the modulus identified in the inclusion is still 4.3, which means that the median filter does not bias

the results. Heterogeneities can still be detected within the inclusion. They may actually exist in the

real material, or just be artifacts caused by some assumptions made in this study. It is yet curious that

similar heterogeneities have already been recovered for a similar phantom using a different approach

of reconstruction [Park and Maniatty, 2006].
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4.2 Comparison with the strain imaging approach

The distribution of the strain component in the loading direction (εyy) can be used as an indicator

for the modulus distribution when the stress distribution is almost homogeneous [Doyley et al., 2005].

According to [Ophir et al., 2001], for low modulus contrast and simplified geometrical boundary con-

ditions, the strain distribution may be a relatively good representation of the underlying modulus

distribution. This approach for determining the modulus distribution is called the “strain imaging”

approach. Let us show that it is inappropriate here.

According to the “strain imaging” approach [Ophir et al., 2001], the ratio σ/εyy should represent

the distribution of the Young modulus across the volume. As σ is unknown here, the ratio εaverage
yy /εyy

has been computed across the whole volume and plotted for all the cross sections along the z direc-

tion (similarly as in Figure 5.7). The results are shown in Figure 5.10. They are less noisy than the

ones of our approach because they are obtained by a mere first order differentiation. However, errors

occur, that prevent the strain imaging approach from being useful either in a quantitative way or in a

qualitative way for the example addressed here. Quantitatively, the modulus of the inclusion is signif-

icantly underestimated (average of 2.5 instead of 4). Qualitatively, the location of the inclusion is well

found but its boundary is blurred in the plane z = 0. Moreover, other heterogeneities are erroneously

detected at the top of the volume of interest. These result from the existence of friction forces at these

locations.

Due to this double failure, it can be concluded that the example processed here can only be addressed

satisfactorily using an inverse method like our approach or like the one developed by Skovodora et al.

[Skovoroda et al., 1995].

4.3 Comparison with Skovodora’s approach [Skovoroda et al., 1995]

Steele et al. [Steele et al., 2000] have processed the same experimental data using another direct

approach to determine the distribution of the shear modulus. Their approach is similar to ours in

principle, but instead of the nodal forces, the curl of the nodal forces is cancelled in their approach. To

remove the hydrostatic pressure from the equilibrium equations, it was assumed in Section 3.2 that its

gradient is negligible and that using particular virtual fields which are null on the boundary cancelled

its contribution (see Eq. 2.23). Computing the curl of the nodal forces is another method for ridding the

hydrostatic pressure from the equilibrium equations. Eventually, one obtains a hyperbolic PDE with

the shear modulus values as unknowns [Barbone and Gokhale, 2004,Skovoroda et al., 1995,Skovoroda

et al., 1998,Skovoroda et al., 1999]. But the derivation of these differential equations is based on a third-

order differentiation of the data instead of the second-order one in our case (Eq. 2.14). According to the

discussion in Section 2.1.5, this third-order differentiation brings even more instability. The instability

is tackled by the authors via numerical integration of the equations [Skovoroda et al., 1995]. This yields
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a system of equations similar to the one of Eq. 2.26, but the coefficients of their matrix involve the

second order derivatives of the data whereas ours involve only the first order derivatives.

The poor stability of the equations solved by Steele et al. may explain the artifacts encountered

in their results [Steele et al., 2000]. Our results show that even when there is one order less in the

differentiation, results are still very noisy (Figure 5.7). Then, only filtering (see Figure 5.9) or regular-

ization approaches based on relevant a priori information [Tikonov and Arsenin, 1977] can improve

the stability.

The stability which is gained in our approach compared to Skovodora’s one [Skovoroda et al., 1995]

relies on the assumption that the gradient of the hydrostatic pressure can be neglected (Eq. 2.23).

This assumption has already been used for time harmonic excitation at 150 Hz by [Park and Maniatty,

2006]. They actually showed that it tends to provide underestimated values. However, our results,

which were obtained by neglecting the gradients of the hydrostatic pressure, are in agreement with

the expected values. The gradients of the hydrostatic pressure are actually less critical in quasi-static

studies than in dynamic studies. Accordingly, due to the relative uniformity of the bulk modulus in

human tissues [Manduca et al., 2001] and due to their incompressibility, it may be justified to consider

that the hydrostatic pressure is constant across quasi-statically deformed human tissues.

5 Conclusion

In this paper, the first extension of the virtual fields method to 3D bulk full-field measurements has

been presented. It has been tested on displacement fields measured by stimulated echo MRI on a

silicone gel phantom containing a stiff spherical inclusion. The identified ratio between the modulus

of the inclusion and the modulus of the surrounding material is in close agreement with the reference

value. Furthermore, the inclusion location is correctly determined. The range of modulus values is very

scattered in the raw results, but smooth modulus distributions are easily recovered by filtering the

noise.

The main limitations of the approach presented in this paper are the assumptions required for its

application: linear elastic and isotropic behaviour, constant Poisson’s ratio, quasi-static loading. The

objective is now to overcome those limitations. Regarding the quasi-static requirement, it could be

overcome by introducing in the equations both the hydrostatic pressure [Park and Maniatty, 2006] and

the viscosity [Giraudeau and Pierron, 2005]. Nonetheless, this would permit faster loading-unloading

cycles as the quasi-static requirement would no longer be needed. A drastic reduction of the data

acquisition time (which was 6h for the data processed here [Steele et al., 2000]) could then be envisaged.
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a leave upon Stéphane Avril for the achievement of this research project, and to EPSRC for partial

support. J.M. Huntley is also grateful to the Royal Society and Wolfson Foundation for a Royal Society

– Wolfson Research Merit Award.



3D heterogeneous stiffness identification using MRI and the virtual fields method 21

References
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x0 (voxels) y0 (voxels) z0 (voxels) rx (voxels) ry (voxels) rz (voxels)

using the magnitude of the MR signal 31.00 27.10 19.61 21.27 13.80 13.40

using the identified modulus distribution 31.46 27.03 19.58 20.96 12.76 12.85

Table 5.1. Comparison of the inclusion contour (defined in Eq. 3.1) identified from the magnitude of the MR signal
and from the identified modulus distribution
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ratio identified with a unique virtual field 4.2

ratio identified from the fully reconstructed modulus distribution 4.3

reference ratio from [Steele et al., 2000] 4

Table 5.2. Comparison of the identified ratios with the reference
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size of the median 1×1×1

filter kernel (no filter) 2×2×1 3×3×1 4×4×1 5×5×1 6×6×1 7×7×1 8×8×1 9×9×1 10×10×1

average modulus
identified in the inclusion 2 2.3 2.5 2.8 2.8 2.9 3 3 3 3

average modulus

identified in

the background 0.64 0.61 0.62 0.65 0.67 0.68 0.69 0.7 0.7 0.7

ratio between

both averages 3.1 3.7 4.0 4.3 4.4 4.3 4.4 4.4 4.3 4.3

standard deviation of

modulus values identified

in the inclusion 2.8 2.5 2.2 1.9 1.8 1.6 1.5 1.3 1.3 1.2

standard deviation of
modulus values identified

in the background 1.2 0.6 0.6 0.5 0.5 0.4 0.4 0.4 0.4 0.4

Table 5.3. Comparison of the results obtained with different sizes of the median filter kernel.
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number of iterations

in the conjugate gradient method 100 250 500 750 1000

average modulus
identified in the inclusion 1.3 2.9 3.0 3.0 3.0

average modulus

identified in the background 0.7 0.7 0.7 0.7 0.7

ratio between

both averages 1.9 4.2 4.3 4.3 4.3

standard deviation of modulus values
identified in the inclusion 0.3 0.8 1.3 1.6 1.8

standard deviation of modulus values

identified in the background 0.3 0.3 0.4 0.4 0.45

Table 5.4. Comparison of the results obtained with different numbers of iterations in the conjugate gradient method.
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Fig. 5.1. Solid of any shape loaded on its boundary.
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Fig. 5.2. 1D solid bar divided in spar finite elements (for the physical interpretation of the method).



Fig. 5.3. Dimensions (in mm) and geometry of an eighth of the tested specimen.
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Fig. 5.4. Experimental displacement components across cross section x = 0 containing the inclusion. (a): ux; (b): uy ;
(c): uz .
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Fig. 5.5. Experimental strain fields across cross section x = 0 containing the inclusion. (a): εxx; (b): εyy ; (c): εxx +
εyy + εzz .
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Fig. 5.7. (a) Identified modulus distribution (dimensionless values) across all the available cross sections. (b) Reference
modulus distribution (dimensionless values) across all the available cross sections.
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Fig. 5.8. Identified modulus distribution across a given cross section for a simulated homogeneous solid subjected to
uniaxial tension with white noise added to the input strain field.
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