figshare
Browse

2D U-Net for segmentation of the four muscle compartments on MRI.

Download (15.61 kB)
journal contribution
posted on 2024-09-06, 17:56 authored by Seung-Ah Lee, Hyun Su Kim, Ehwa Yang, Young Cheol Yoon, Ji Hyun Lee, Byung-Ok Choi, Jae-Hun Kim

2D U-Net for segmentation of the four muscle compartments on MRI.

History

Usage metrics

0
0
0
    PLOS ONE

    Categories

    • Space Science
    • Medicine
    • Cell Biology
    • Neuroscience
    • Physiology
    • Chemical Sciences not elsewhere classified
    • Biological Sciences not elsewhere classified
    • Information Systems not elsewhere classified

    Keywords

    per subject exhibitedbased labeling strategyaverage dice coefficients97 ± 984 ± 379 ± 442 ± 439 ± 329 ± 403 ± 3slices strategy showedslices per subjectground truth segmentationautomated muscle segmentationleveraging unlabeled datausing axial t1labeled set models07 %; lowermostusing unlabeled datasupervised model showedsignificantly higher adcdiv >< p46 %) compared41 %; centralsupervised learning modelslabeling three sliceshighest segmentation performancesupervised model usinglower leg mrislowermost sliceslabeled datasupervised learningsegmentation performancemodel performanceusing pairedstrategies usingweighted mristooth diseasep net architectureefficient methodbonferroni correction82 %,71 %,2d u

    Licence

    CC BY 4.0CC BY 4.0

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC
    • About
    • Solutions
    • Tools
    • Blog
    • Contact
    • Help
    • Privacy Policy
    • Cookie Settings
    • Terms
    • Sitemap
    facebook pageX pagevimeo page
    figshare. credit for all your research.
    Digital ScienceDataCiteCOPEData Citation IndexOpen Access