SUPPLEMENTARY MATERIALS

24-Nor-allobetulins possess strong α-glucosidase inhibitory activity

L.M. Zakirova ${ }^{\text {a, }}{ }^{*}$, I.P. Baikova ${ }^{\text {a }}$, I.E. Smirnova ${ }^{\text {a }}$, E.V. Tretyakova ${ }^{\text {a }}$, A.N. Lobov ${ }^{\text {a }}$, H.T.T. Nguyen ${ }^{\text {b }}$, O.B. Kazakova ${ }^{\text {a }}$
${ }^{a}$ Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russian Federation
${ }^{b}$ Institute of Chemistry, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet
Str., Cau Giay Dist., Hanoi, Viet Nam

Abstract

A series of 24 -nor-allobetulin derivatives holding 3β-hydroxy-, oxime, methoxyoxime, lactame and 4-bromobenzylidene substituents have been synthesized and their differences in the NMR spectra were studied in detail. It was revealed that 3-oxo-24-norallobetulin loses selectivity in the reaction of oximation and forms a mixture of Z / E oximes (and methoxyoximes) in contract to the related derivatives of native scaffold (that forms only E isomers). The screening of α-glucosidase inhibitory activity revealed that 24 -nor-allobetulins are more active than allobetulins. The lead 3-oxo-24-nor-allobetulin with $\mathrm{IC}_{50} 0.49 \mu \mathrm{M}$ was more than 60 -fold and 500 -fold active than acarbose and 3 -oxo-allobetulin, respectively. We can conclude that the removal of the C-24 methyl group significantly increased the antidiabetic effect and 24 -nor-allobetulins should be identified as the new and promising scaffolds as α-glucosidase inhibitors on the basis of triterpenoids.

Keywords: triterpenoids; allobetulin; 24-nor-allobetulin; α-glucosidase inhibitory activity

Table of contents

Experimental part 3
Chemistry 3
Procedure for the synthesis of compounds 3-7, $\mathbf{1 2}$ and their NMR spectral data 3
α-Glucosidase Inhibition Assay Method 6
In vitro cytotoxicity study of compounds 2 7
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, HMBC NMR spectra of compound $\mathbf{3}$ 8
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 4 10
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}, \mathrm{HMBC}$ NMR spectra of compound 5 11
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}, \mathrm{HMBC}$ NMR spectra of compound $\mathbf{6}$ 13
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}, \mathrm{HMBC}$ NMR spectra of compound 7 15
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, HMBC NMR spectra of compound $\mathbf{1 2}$ 17
The synthetic route from allobetulin $\mathbf{1}$ to 24 -nor-allobetulin 2 19
The main correlations in cycles A, B and C in the spectra of $\left\{{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right\}$ HMBC and $\left\{{ }^{1} \mathrm{H}\right.$, 20
${ }^{1}$ H\} NOESY of compound $\mathbf{8}$
Comparison of spectral characteristics of compounds $\mathbf{1}$ and $\mathbf{3}$ 21
Comparison of spectral characteristics of compounds 9 and 4 22
Comparison of spectral characteristics of compounds $\mathbf{1 0}$ and $\mathbf{5}$ 23
Comparison of spectral characteristics of compounds 11 and $\mathbf{6}$ 24
Comparison of spectral characteristics of compounds 12 and 7 25
Expanded and assigned ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{4}$ and 5 26
Comparison of the spectral characteristics at A-ring for 3-oxo-allobetulin $\mathbf{8}$ and 3-oxo- 27
24-nor-allobetulin 2
The result of cytotoxicity tests for the lead compound $\mathbf{2}$28

1. Experimental part

1.1. Chemistry

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and two-dimensional correlation spectra of compounds $\mathbf{1 - 1 2}$ were recorded on a Bruker Avance-III 500 MHz spectrometer in CDCl_{3} using TMS as internal standard. Melting points were measured on a microtable Boetius. Optical rotations were measured on a Perkin-Elmer 241 MC polarimeter (Germany) in a 1 dm tube. Elemental analysis was performed on Euro EA-3000 CHNS analyzer (Eurovector, Milan, Italy); the main standard is acetanilide. Thin layer chromatography analyses were performed on Sorbfil plates (Sorbpolimer, Krasnodar, Russian Federation), using the solvent system chloroform-ethyl acetate, 40:1. Column chromatography was performed on SiO_{2} (Silica 60, Macherey-Nagel). Substances were detected by a 10% solution of a sulfuric acid solution with subsequent heating at $100-120^{\circ} \mathrm{C}$ for $2-3 \mathrm{~min}$. Compounds $\mathbf{1 , 8 - 1 2}$ were synthesized according to the methods described in (Dracinsky et al. 2006; Flekhter et al. 2009; Heller et al. 2015; Kazakova et al. 2019; Li et al. 1998).

3ß-Hydroxy-19ß,28-epoxy-24-nor-18 -oleane (3):
To the solution of compound $2(0.51 \mathrm{~g}, 1 . \mathrm{mmol})$ in methanol (10 mL) $\mathrm{NaBH}_{4}(0.1 \mathrm{~g}, 2.7 \mathrm{mmol})$ was added under stirring. The reaction mixture was stirred under room temperature for 16 h and then was diluted by water (20 mL) and stirred for 1 h . The amorphous precipitate was filtered off. Yield $75 \%(0.38 \mathrm{~g})$, m.p. $>250^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}+47^{\circ}\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right.$). Calculated, \%: C 81.2; H 11.3; O 7.5, $\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{O}_{2} .{ }^{13} \mathrm{C}$ NMR spectrum ($\mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 13.36 (C27); 14.36 (C25); 15.05 (C24); 15.72 (C26); 20.80 (C6); 21.34 (C11); 24.55 (C29); 26.30 (C12); 26.34 (C15); 26.52 (C16); 28.82 (C30); 30.76 (C2); 32.74 (C21); 33.06 (C7); 34.13 (C13); 36.27 (C20); 36.62 (C10); 36.78 (C22); 38.18 (C1); 38.42 (C4); 40.25 (C8); 40.77 (C14); 41.48 (C17); 46.85 (C18); 48.98 (C9); 51.48 (C5); 71.29 (C28); $76.64(\mathrm{C} 3) ; 87.94(\mathrm{C} 19) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}, J \mathrm{~Hz}\right)$: 0.62 (ddd, 1H, J = 12.1, 11.4, 2.7, H-5); 0.79 (s, 3H, H-29); 0.81 (s, 3H, H-25); 0.91 (s, 3H, H27); 0.93 (s, 3H, H-30); 0.95 (d, 3H, $J=6.4, ~ H-24) ; ~ 0.98(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-26) ; 0.93-1.85$ (m, 24H, $\mathrm{CH}, \mathrm{CH}_{2}$); 3.07 (ddd, $1 \mathrm{H}, J=11.2,9.7,5.0, \mathrm{H}-3$); 3.44 (d, 1H, $J=7.0, \mathrm{H}_{\mathrm{A}}-28$); 3.53 (s, 1H, H19); 3.78 (d, 1H, J=7.0, НВ-28); 4.00 (br.s, OH).

3 β-Hydroxyimino-19ß,28-epoxy-24-nor-18 α-oleane (4):

A mixture of compound $2(0.51 \mathrm{~g}, 1.0 \mathrm{mmol})$ and hydroxylamine hydrochloride $(0.07 \mathrm{~g}, 1$ $\mathrm{mmol})$ in pyridine (20 mL) was refluxed for 6 h , then poured into $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The precipitate was filtered, washed with $5 \% \mathrm{HCl}$, water and dried. Yield $83 \%(0.42 \mathrm{~g})$, m.p. $>250^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}{ }^{20}+10^{\circ}\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right)$. Calculated, \%: C 78.9; H 10,7; N 3.2, O 7.2, $\mathrm{C}_{29} \mathrm{H}_{47} \mathrm{NO}_{2}$.
${ }^{13} \mathrm{C}$ NMR spectrum for E izomer ($\mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 13.33 (C27); 13.73 (C25); 14.06 (C24); 15.59 (C26); 19.70 (C2); 21.50 (C11); 21.67 (C6); 24.52 (C29); 26.28 (C15); 26.36 (C12); 26.51(C16);
28.90 (C30); 32.73 (C7); 32.80 (C21); 34.20 (C13); 36.18 (C4); 36.28 (C20); 36.75 (C22); 36.81 (C10); 38.76 (C1); 40.32 (C8); 40.76 (C14); 41.44 (C17); 46.84 (C18); 48.72 (C9); 53.26 (C5); 71.21 (C28); $87.81(\mathrm{C} 19) ; 161.22(\mathrm{C} 3) .{ }^{1} \mathrm{H}$ NMR spectrum for E izomer $\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}, J \mathrm{~Hz}\right)$: 0.79 (s, 3H, H-25); $0.90-1.70\left(\mathrm{~m}, 35 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}, \mathrm{CH}_{3}\right) ; 1.99$ (ddd, $1 \mathrm{H}, J=13.1,6.5,2.4, \mathrm{H}_{\mathrm{eq}}{ }^{-}$ 1); 2.05 (ddd, $1 \mathrm{H}, J=15.7,12.5,6.7, \mathrm{H}_{\mathrm{ax}}-2$); 2.23 (dq, 1H, $\left.J=11.9,6.4, \mathrm{H}-4\right) ; 3.14$ (ddd, $1 \mathrm{H}, J$ $\left.=15.5,5.8,2.2,1 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}-2\right) ; 3.45\left(\mathrm{~d}, 1 \mathrm{H}, J=7.7, \mathrm{H}_{\mathrm{A}}-28\right) ; 3.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-19) ; 3.77(\mathrm{~d}, 1 \mathrm{H}, J=7.7$, H_{B}-28); 4.42 (br.s, NOH). ${ }^{15} \mathrm{~N}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 345.95$ (NOH).
${ }^{1} \mathrm{H}$ NMR spectrum for Z izomer $\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}, J \mathrm{~Hz}\right): 0.72(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-25) ; 0.90-1.70(\mathrm{~m}, 35 \mathrm{H}$, $\mathrm{CH}, \mathrm{CH}_{2}, \mathrm{CH}_{3}$); 2.40 (ddd, $1 \mathrm{H}, J=14.3,9.4,9.1, \mathrm{H}_{\alpha}-2$); 2.51 (dt, $1 \mathrm{H}, J=14.0,10.0, \mathrm{H}_{\beta}-2$); 2.65 (dq, $1 \mathrm{H}, J=10.6,6.4, \mathrm{H}-4) ; 3.45\left(\mathrm{~d}, 1 \mathrm{H}, J=7.7, \mathrm{H}_{\mathrm{A}}-28\right) ; 3.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-19) ; 3.77(\mathrm{~d}, 1 \mathrm{H}, J=$ 7.7, $\mathrm{H}_{\mathrm{B}}-28$); 4.42 (br.s, NOH). ${ }^{15} \mathrm{~N}$ NMR spectrum ($\mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 345.95 (NOH).

3-Methoxyimino-19ק, 28-epoxy-24-nor-18 -oleane (5):

To the solution of compound $2(0.51 \mathrm{~g}, 1.0 \mathrm{mmol})$ in a dry pyridine $(30 \mathrm{~mL}) \mathrm{CH}_{3} \mathrm{ONH}_{2} \cdot \mathrm{HCl}$ $(0.17 \mathrm{~g}, 1.0 \mathrm{mmol})$ was added. The reaction mixture was refluxed for 8 h with a back condenser, cooled to room temperature, and quenched with $5 \% \mathrm{HCl}(150 \mathrm{~mL})$. The precipitate was filtered off, washed with water, and air-dried. The residue was crystallized from hexane. Yield 81% $(0.41 \mathrm{~g})$, m.p. $>250^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}+93^{\circ}$ (c $0.5, \mathrm{CHCl}_{3}$). Calculated, \%: C 79.1; H 10.8; N 3.1, O 7.0, $\mathrm{C}_{30} \mathrm{H}_{49} \mathrm{NO}_{2} .{ }^{13} \mathrm{C}$ NMR spectrum for E izomer $\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)$: 13.35 (C27); 13.89 (C26); 13.95(C25); 15.64 (C24); 20.38 (C2); 21.53 (C11); 21.72 (C6); 24.59 (C29); 26.31 (C15); 26.38 (C12); 26.53 (C16); 28.85 (C30); 31.96 (C21); 32.77 (C7); 34.20 (C13); 36.16 (C4); 36.32 (C20); 36.78 (C10); 38.81(C22); 38.87 (C1); 40.38 (C8); 40.83 (C14); 41.52 (C17); 46.86 (C18); 48.76 (C9); 53.25 (C5); $61.10\left(\mathrm{CH}_{3} \mathrm{ON}\right) ; 71.33$ (C28); 87.97 (C19); $162.89(\mathrm{C} 3) ;{ }^{1} \mathrm{H}$ NMR spectrum for E izomer $\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}, J \mathrm{~Hz}\right)$: 0.88 (s, $3 \mathrm{H}, \mathrm{H}-25$); $0.89-1.67\left(\mathrm{~m}, 35 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}\right.$, CH_{3}); 1.84 (ddd, $\left.1 \mathrm{H}, J=13.1,6.5,2.4, \mathrm{H}_{\text {eq }}-1\right) ; 1.96\left(\mathrm{ddd}, 1 \mathrm{H}, J=15.7,12.5,6.7, \mathrm{H}_{\mathrm{ax}}-2\right) ; 2.13$ (dq, $1 \mathrm{H}, J=11.9,6.4, \mathrm{H}-4) ; 3.03$ (ddd, $1 \mathrm{H}, J=15.5,5.8,2.2,1 \mathrm{H}, \mathrm{H}_{\text {eq }}-2$); 3.44 (d, $1 \mathrm{H}, J=7.7$, $\left.\mathrm{H}_{\mathrm{A}}-28\right) ; 3.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-19) ; 3.77\left(\mathrm{~d}, 1 \mathrm{H}, J=7.7, \mathrm{H}_{\mathrm{B}}-28\right) ; 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) .{ }^{15} \mathrm{~N}$ NMR spectrum for E izomer $\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 363.09\left(\mathrm{NOCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR spectrum for Z izomer $\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)$: 13.46 (C27); 14.98 (C 26); 15.09 (C25); 17.39 (C24); 21.93 (C11); 22.45 (C6); 24.44 (C2); 24.60 (C29); 26.28 (C15); 26.45 (C12); 26.58 (C16); 28.86 (C30); 31.97 (C21); 32.73 (C7); 33.64 (C4); 34.45 (C13); 36.24 (C10); 36.33 (C20); 36.80 (C22); 39.54 (C1); 40.57 (C8); 40.75 (C14); 41.51 (C17); 46.86 (C18); 48.14 (C5); 49.82 (C9); $61.24\left(\mathrm{CH}_{3} \mathrm{ON}\right) ; 71.34$ (C28); 87.96 (C19); 166.01 (C3). ${ }^{1} \mathrm{H}$ NMR spectrum for Z izomer $\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}, J \mathrm{~Hz}\right.$): 0.73 (s, $3 \mathrm{H}, \mathrm{H}-25$); 0.89-1.67 (m, $35 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}, \mathrm{CH}_{3}$); ;2.24 $\left(\mathrm{dt}, 1 \mathrm{H}, J=14.0,9.9, \mathrm{H}_{\alpha}-2\right) ; 2.33\left(\mathrm{dt}, 1 \mathrm{H}, J=14.0,10.0, \mathrm{H}_{\beta}-2\right) ; 2.52(\mathrm{dq}, 1 \mathrm{H}, J=10.6,6.4, \mathrm{H}-$
4); 3.44 (d, 1H, $\left.J=7.7, \mathrm{H}_{\mathrm{A}}-28\right) ; 3.53$ (s, 1H, H-19); 3.77 (d, $1 \mathrm{H}, J=7.7, \mathrm{H}_{\mathrm{B}}-28$); 3.82 (s, 3 H , $\left.\mathrm{OCH}_{3}\right) \cdot{ }^{15} \mathrm{~N}$ NMR spectrum for Z izomer $\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 351.83\left(\mathrm{NOCH}_{3}\right)$.

3 β-Oxo-3a-aza-A-homo-19ß,28-epoxy-24-nor-18 α-oleane (6):

$\mathrm{SOCl}_{2}(0.5 \mathrm{~mL}, 1 \mathrm{mmol})$ was dropwise added to a stirred solution of compound $4(0.5 \mathrm{~g}, 1$ mmol) in dried 1,4-dioxane (100 mL). The resulted solution was left at room temperature overnight. The brownish mixture was then poured into water, slightly acidified with HCl . The resulted light-brown precipitate was filtered off, washed with water, dried, subjected to column chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CHCl}_{3}, \mathrm{CHCl}_{3}\right.$-EtOH 100:1, CHCl_{3}-EtOH 50:1). Yield 78\% (0.39 g), m.p. $>250^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}+67^{\circ}\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right)$. Calculated, $\%$: C 78.9 ; H 10.7; N 3.2, O $7.2, \mathrm{C}_{29} \mathrm{H}_{47}$ $\mathrm{NO}_{2} .{ }^{13} \mathrm{C}$ NMR spectrum ($\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 13.21$ (C27); 14.10 (C25); 15.74 (C26);19.21 (C23); 21.30 (C6); 21.40 (C11); 24.54 (C29); 26.23 (C16); 26.28 (C15); 26.46 (C12); 28.80 (C30); 30.48 (C2); 32.70 (C7); 32.75 (C21); 34.01 (C13); 36.27 (C20); 36.71 (C22); 36.74 (C1); 39.54 (C10); 40.25 (C14); 40.88 (C8);41.46 (C17); 46.72 (C18); 47.75 (C4); 48.76 (C9); 53.58 (C5); 71.27 (C28); 87.89 (C19); 177.99 (C3). ${ }^{1} \mathrm{H}$ NMR spectrum ($\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}, J \mathrm{~Hz}\right): 0.79(\mathrm{~s}, 3 \mathrm{H}$, H-29); 0.90 (s, 3H, H-27); 0.93 (s, 6H, H-30, H-25); 0.94 (s, 3H, H-25); 0.99 (s, 3H, H-26); 1.17 (d, $3 \mathrm{H}, J=6.7, \mathrm{H}-24) ; 1.12-1.70\left(\mathrm{~m}, 21 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}\right) ; 1.97\left(\mathrm{ddd}, 1 \mathrm{H}, J=13.8,7.0,5.1, \mathrm{H}_{\mathrm{eq}}-1\right.$); 2.27 (ddd, 1H, $J=15.6,7.9,4.6, \mathrm{H}_{\mathrm{ax}}-2$); 2.70 (ddd, $1 \mathrm{H}, J=15.6,7,5,8.9, \mathrm{H}_{\text {eq }}-2$); $3.45(\mathrm{~d}, 1 \mathrm{H}, J$ $\left.=7.0, \mathrm{H}_{\mathrm{A}}-28\right) ; 3.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-19) ; 3.55(\mathrm{dq}, 1 \mathrm{H}, J=6.7, \mathrm{H}-4), 3.77\left(\mathrm{~d}, 1 \mathrm{H}, J=7.0, \mathrm{H}_{\mathrm{B}}-28\right) ; 6.46$ (br.s, NH). ${ }^{15} \mathrm{~N}$ NMR spectrum ($\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 142.40(\underline{\mathrm{NH}})$.

4.2. Synthesis of compounds (7) and (12):

A mixture of compound $\mathbf{2}$ or $\mathbf{8}(1 \mathrm{~g}, 2.3 \mathrm{mmol})$ and 4-bromobenzaldehyde ($0.35 \mathrm{~g}, 2.5 \mathrm{mmol}$) in ethanol (30 mL), containing a catalytic amount of 40% potassium hydroxide solution in ethanol, was stirred under room temperature for 24 h . The reaction mixture was then poured into water, slightly acidified with HCl . The resulted precipitate was filtered off, washed with water and dried.

2-(4-Bromobenzylidene)-19ß,28-epoxy-24-nor-18 α-oleanan-3-one (7):

The product was crystallized from $\mathrm{CHCl}_{3}-\mathrm{EtOH}(20: 1)$. Yield $79 \%(0.79 \mathrm{~g})$, m.p. $>250^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}{ }^{20}-21^{\circ}\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right)$. Calculated, \%: C 73.1; H 8.5; Br 13.1 ; O 5.3, $\mathrm{C}_{37} \mathrm{H}_{51} \mathrm{BrO}_{2} .{ }^{13} \mathrm{C}$ NMR spectrum ($\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 13.48$ (C26); 14.95 (C23); 15.10 (C25); 15.17 (C27); 21.82 (C11); 22.91 (C6); 24.60 (C30); 26.28 (C12); 26.43 (C16); 26.53 (C15); 28.86 (C29); 32.13 (C7); 32.73 (C21); 34.30 (C13); 36.23 (C20); 36.34 (C10); 36.78 (C22); 40.39 (C8); 40.84 (C14); 41.52 (C17); 44.08 (C1); 44.33 (C4); 46.87 (C18); 48.21 (C9); 49.81 (C5); 71.33 (C28); 87.98(C19); 122.75 (C5'); 131.67 (C4'), 131.67 (C6'); 131.72 (C3'); 131.72 (C7'); 134.77 (C2'); $135.82(\mathrm{C} 2) ; 136.11(\mathrm{C} 1)$; $204.47(\mathrm{C} 3) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}, J \mathrm{~Hz}\right): 0.80(\mathrm{~s}, 3 \mathrm{H}$, H-25); 0.81 (s, 3H, H-30); 0.94 (s 3H, H-29); 0.96 (s, 3H, H-26); 1.00 (s, 3H, H-27); 1.20 (d,
$3 H, J=6.8, \mathrm{H}-23) ; 1.01-1.70\left(\mathrm{~m}, 19 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}\right) ; 1.70\left(\mathrm{td}, 1 \mathrm{H}, J=12.3,3.5, \mathrm{H}_{\mathrm{ax}}-15\right) ; 2.12(\mathrm{~d}, 1 \mathrm{H}$, $J=15.8, \mathrm{H}_{\mathrm{B}}-1$); 2.16 (q, 1H, $\left.J=6.8, \mathrm{H}-4\right) ; 3.04$ (d, $1 \mathrm{H}, J=15.8, \mathrm{H}_{\mathrm{A}}-1$); 3.46(d, 1H, $J=7.6, \mathrm{H}_{\mathrm{B}}{ }^{-}$ 28); 3.55 (s, 1H, H-19); 3.78 (d, 1H, J=7.6, H ${ }_{\mathrm{A}}-28$); 7.24 (d, 2H, J = 8.4, H-3', H-7'); 7.40 ($\mathrm{s}, 1 \mathrm{H}$, H-1'); 7.51 (d, 2H, J= 8.4, H-4', H-6').

2-(4-Bromobenzylidene)-19ß,28-epoxy-18 α-oleanan-3-one (12):

The product was crystallized from $\mathrm{CHCl}_{3}-\mathrm{EtOH}(20: 1)$. Yield $81 \%(0.81 \mathrm{~g})$, m.p. $>250^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}{ }^{20}-90^{\circ}\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right)$. Calculated, \%: C 73.17; H 8.89; Br 12.81; O 5.13, $\mathrm{C}_{38} \mathrm{H}_{55} \mathrm{BrO}_{2} .{ }^{13} \mathrm{C}$ NMR spectrum ($\mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 13.49 (C26); 15.30 (C27); 16.16 (C25); 20.36(C6); 21.85 (C11); 22.40 (C24); 24.61 (C30); 26.30 (C12); 26.46 (C16); 26.60 (C15); 28.87 (C29); 29.50 (C23); 32.75 (C7); 32.75(C21); 34.35(C13); 36.34 (C20); 36.63 (C10); 36.79 (C22); 40.51 (C8); 40.86 (C14); 41.53 (C17); 44.68 (C1); 45.29 (C4); 46.85 (C18); 49.07 (C9); 53.06 (C5); 71.33 (C28); 87.95(C19); 122.70 (C5'); 131.69 (C4'), 131.69 (C6'); 131.73(C3'); 131.73(C7'); 134.93 (C2); 134.99 (C5'); 136.02 (C1'); 207.96 (C3). ${ }^{1} \mathrm{H}$ NMR spectrum ($\mathrm{CDCl}_{3}, \delta \mathrm{ppm}, J \mathrm{~Hz}$): 0.80 (s, 3H, H-25); 0.80 (s, 3H, H-30); 0.93 (s, 3H, H-29); 0.95 (s, 3H, H-26); 1.00 (s, 3H, H-27); 1.12 (s, 3H, H-23); 1.15 (s, 3H, H-24); 1.01-1.70 (m, 19H, CH, CH2); 1.71 (td, 1H, J=12.3, 3.5, $\mathrm{H}_{\mathrm{ax}}{ }^{-}$ 15); 2.19 (d, $\left.1 \mathrm{H}, J=15.8, \mathrm{H}_{\mathrm{B}}-1\right) ; 3.01\left(\mathrm{~d}, 1 \mathrm{H}, J=15.8, \mathrm{H}_{\mathrm{A}}-1\right) ; 3.45\left(\mathrm{~d}, 1 \mathrm{H}, J=7.7, \mathrm{H}_{\mathrm{B}}-28\right) ; 3.54$ (s, $1 \mathrm{H}, \mathrm{H}-19) ; 3.78$ (d, $1 \mathrm{H},{ }^{2} J=7.7, \mathrm{H}_{\mathrm{A}}-28$); 7.30 (d, $\left.\left.\left.2 \mathrm{H}, J=8.5, \mathrm{H}-3 ', \mathrm{H}-7\right)^{\prime}\right) ; 7.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1)^{\prime}\right) ;$ 7.51 (d, 2H, J. = 8.5, H-4', H-6').

1.2. α-Glucosidase Inhibition Assay Method

α-Glucosidase enzyme inhibition assay was carried out in a 96 -well microplate. The assay is based on the hydrolysis reaction of 4-nitrophenyl- α-D-glucopyranoside with α glucosidase to form yellow colored 4-nitrophenol: p-Nitrophenyl α-D-Glucoside $\xrightarrow{\alpha \text {-Glucosidase }} \alpha$-D-Glucose +p - Nitrophenol
α-Glucosidase inhibitory activity assay was performed following the modified method of Pistia Brueggeman and Hollingsworth with slight modification. Compounds were dissolved in DMSO - EtOH (1:1) solution to final concentrations of $256,64,16,4$ and $1 \mu \mathrm{~g} / \mathrm{mL}$. The concentration was determined by a series of α-glucosidase kinetic experiments in a 96 -well plate, using a reaction mixture containing $20 \mu \mathrm{~L}$ of compound varying concentrations, $20 \mu \mathrm{~L}$ of phosphate buffer (100 mM ; pH 6.8), and $20 \mu \mathrm{~L}$ of α-glucosidase ($0.3 \mathrm{U} / \mathrm{mL}$, Sigma G0660) were pre-incubated for 10 min at $37^{\circ} \mathrm{C}$. Then $20 \mu \mathrm{~L}$ of 2.5 M p-nitrophenyl α-D-glucopyranoside (Sigma N1377) was added to the mixture as a substrate. After further incubation at $37^{\circ} \mathrm{C}$ for 30 min, the reaction was stopped by adding $80 \mu \mathrm{~L}$ of 0.1 M sodium carbonate. The enzyme, tested compound and substrate solution were prepared using the phosphate buffer $10 \mathrm{mM} ; \mathrm{pH} 6.8$.

Acarbose was used as a positive control and water as a negative one. The yellow color produced was quantitated by colorimetric analysis and reading the absorbance at 410 nm . Each experiment was performed in triplicates, along with appropriate blanks. The solvent DMSO was used as a negative control to evaluate its effect on α-glucosidase activity. Buffer was used instead of tested compound in positive control and instead of enzyme or substrate in the negative control. Background was determined by the volume of a buffer as a reaction mixture.
The \% inhibition has been obtained using the formula:
$\%$ inhibition $=\{$ Absorbance $($ control $)-$ Absorbance $($ sample $)\} / A b s o r b a n c e ~(c o n t r o l) ~$
The IC_{50} value is defined as a concentration of samples inhibiting 50% of α-glucosidase activity under the stated assay conditions.

1.3. In vitro cytotoxicity study of compound 2

MTT assay was used to determine the cytotoxic activity of compounds with human cancer cell lines acquired from the American Type Culture Collection (ATCC): epidermoid carcinoma (KB, ATCC number CCL-17), hepatocellular carcinoma (HepG2, ATCC number HB8065), lung adenocarcinoma LU-1 (ATCC number HTB - 57^{TM}), breast adenocarcinoma MCF-7 (ATCC number HTB $-22^{\text {TM }}$. Cells were cultured in medium DMEM supplemented with 10% Fetal bovine serum (FBS), 1\% Penicillin and Streptomycin and 1% L-glutamine, under a humidified atmosphere of $5 \% \mathrm{CO}_{2}$ at $37^{\circ} \mathrm{C}$.

Compounds were dissolved in DMSO at $40 \mathrm{mg} / \mathrm{mL}$ and a series of dilutions for each compound was prepared to final concentrations of $256,64,16,4$ and $1 \mu \mathrm{~g} / \mathrm{mL}$. Cells were separated with trypsin and seeded in each well with 3×10^{4} cells per ml and were treated with sample different concentrations on 96-well plates. Untreated cells represented the controls. After 72h of treatment, an MTT solution ($10 \mu \mathrm{l}, 5 \mathrm{mg} / \mathrm{mL}$) of phosphate buffer was added to each well for 4 h until intracellular purple formazan crystals are visible. Remove MTT and add DMSO solution $(100 \mu \mathrm{~L})$. The optical density of the solution was determined by Epoch ${ }^{\mathrm{TM}}$ Microplate Spectrophotometer at 540 nm . The inhibition ratio was calculated based on the optical densities from the three replicate tests.
$\mathrm{IC}_{50} \leq 20 \mu \mathrm{~g} / \mathrm{mL}$ (with crude extract) and $\mathrm{IC}_{50} \leq 4 \mu \mathrm{~g} / \mathrm{mL}$ or $10 \mu \mathrm{M}$ (with compound) are evaluated to have cytotoxic activity (Mosmann 1983).

Table S1. The result of cytotoxicity tests for the lead compound 2

Code number	IC_{50} values $(\mu \mathrm{g} / \mathrm{mL})$			
	KB	Hep-G2	Lu-1	MCF-7
3-oxo-24-nor-allobetulin 2	153.14 ± 5.0	237.17 ± 6.4	49.05 ± 1.6	222.89 ± 5.5

Figure S1. Complete ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum of compound $\mathbf{3}$ in CDCl_{3}

Figure $\mathbf{S 2}$. HMBC spectrum of compound $\mathbf{3}$ in CDCl_{3}

Figure S3. Complete ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum of compound $\mathbf{4}$ in CDCl_{3}

Figure S4. Complete ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum of compound $\mathbf{5}$ in CDCl_{3}

Figure S5. HMBC spectrum of compound $\mathbf{5}$ in CDCl_{3}

Figure S6. Complete ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum of compound 6 in CDCl_{3}

Figure S7. HMBC spectrum of compound $\mathbf{6}$ in CDCl_{3}

Figure S8. Complete ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum of compound 7 in CDCl_{3}

Figure S9. HMBC spectrum of compound $\mathbf{7}$ in CDCl_{3}

Figure S10. Complete ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum of compound $\mathbf{1 2}$ in CDCl_{3}

Figure S11. HMBC spectrum of compound 12 in CDCl_{3}

Figure S12. The synthetic route from allobetulin 1 to 24-nor-allobetulin 2

Figure S13. The main correlations in cycles A, B and C in the spectra of $\left\{{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right\} \mathrm{HMBC}$ and $\left\{{ }^{1} \mathrm{H},{ }^{1} \mathrm{H}\right\}$ NOESY of compound $\mathbf{8}$

Figure S14. Comparison of spectral characteristics of compounds $\mathbf{1}$ and $\mathbf{3}$

$$
\begin{align*}
& { }^{3} J_{5-6 \mathrm{ax}}=12.1 \\
& { }_{5}{ }_{5-4}=11.4 \\
& { }^{3} J_{5-6 \mathrm{eq}}=2.7
\end{align*}
$$

H-5

$$
\begin{aligned}
& { }^{3} J_{5-6 \mathrm{ax}}=11.4 \\
& { }^{3} \boldsymbol{J}_{5-6 \mathrm{on}}=1.8
\end{aligned}
$$

0.70

Figure S15. Comparison of spectral characteristics of compounds 9 and 4 (Z - and E-isomers)

Z - isomer of 4

\boldsymbol{E} - isomer of 4

Figure S16. Comparison of spectral characteristics of compounds $\mathbf{1 0}$ and 5 (Z - and E-isomers)

Figure S17. Comparison of spectral characteristics of compounds 11 and 6

11

6

Figure S18. Comparison of spectral characteristics of compounds 12 and 7

12

7

Figure S19. Expanded and assigned ${ }^{1} \mathrm{H}$ NMR spectra of compound: a) $\mathbf{4}$ and b) $\mathbf{5}$ in CDCl_{3}

a

Figure S20. Comparison of the spectral characteristics at A-ring for 3-oxo-allobetulin $\mathbf{8}$ (left) and 3-oxo-24-nor-allobetulin 2 (right)

8

2

References

Dracinsky M, Richtr V, Krecek V, Sejbal J, Klinot J, 2006. Preparation and Conformational Study of 19ß,28Epoxy18 α-olean-5- ene derivatives. Collect. Czech. Chem. Commun. 71(3):387-410. doi:10.1135/cccc20060387
Flekhter OB, Medvedeva NI, Tolstikov GA, Savinova OV, Boreko EI, Dolgushin FM, 2009. Betulonic amides modified at cycle a by amino acids: Synthesis and inhibition of flu A virus reproduction. Russ. J. Bioorg. Chem. 35:129-133. doi:10.1134/S1068162009010154
Heller L, Obernauer A, Csuk R, 2015. Simple structural modifications confer cytotoxicity to allobetulin. Bioorg. Med. Chem. 23(13):3002-3012. doi:10.1016/j.bmc.2015.05.015
Kazakova OB, Khusnutdinova EF, Petrova AV, Yamansarov E, Lobov AN, Fedorova AA, Suponitsky KYu, 2019. Diastereoselective Synthesis of Triterpenoid 1, 2, 4-Trioxolanes by Griesbaum Co-ozonolysis. J. Nat. Prod. 82(9):2550-2558. doi:10.1021/acs.jnatprod.9b00393
Li TS, Wang JX, Zheng XJ, 1998. Simple synthesis of allobetulin, 28 -oxyallobetulin and related biomarkers from betulin and betulinic acid catalysed by solid acids, J. Chem. Soc. Perkin Trans. 23:3957-3966. doi:10.1039/a806735j
Mosmann T, 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol Methods. 65:55-63. doi:10.1016/0022-1759(83)90303-4.

