bi101225d_si_001.pdf (285.04 kB)

p67/MetAP2 Suppresses K-RasV12-Mediated Transformation of NIH3T3 Mouse Fibroblasts in Culture and in Athymic Mice

Download (285.04 kB)
journal contribution
posted on 30.11.2010 by Avijit Majumdar, Arnab Ghosh, Samit Datta, Bethany C. Prudner, Bansidhar Datta
In many tumor cells, the activation and activity of extracellular signal-regulated kinases (ERK1/2) are very high because of the constitutive activation of the Ras-mediated signaling pathway. Here, we ectopically expressed the human homologue of rat eukaryotic initiation factor 2-associated glycoprotein, p67/MetAP2, in EGF-treated mouse embryonic NIH3T3 fibroblasts and C2C12 myoblasts and NIH3T3 cell lines expressing the constitutively active form of MAP kinase kinase (MEK) to inhibit the activation and activity of ERK1/2 MAP kinases. In addition, we also ectopically expressed rat p67/MetAP2 in oncogenic Ras-induced transformed NIH3T3 fibroblasts and inhibited their transformed phenotype both in culture and in athymic nude mice possibly by inhibiting angiogenesis. This inhibition of ERK1/2 MAP kinases is due to the direct binding with rat p67/MetAP2, and this leads to the inhibition of activity of ERK1/2 MAP kinases both in vitro and in vivo. Furthermore, expression of p67/MetAP2 siRNA in both NIH3T3 fibroblasts and C2C12 myoblasts causes activation and activity of ERK1/2 MAP kinases. Our results thus suggest that ectopic expression of rat p67/MetAP2 in transformed cells can inhibit the tumorigenic phenotype by inhibiting the activation and activity of ERK1/2 MAP kinases and, thus, that p67/MetAP2 has tumor suppression activity.

History

Exports