nn506107c_si_001.pdf (2.06 MB)

UV-Emitting Upconversion-Based TiO2 Photosensitizing Nanoplatform: Near-Infrared Light Mediated in Vivo Photodynamic Therapy via Mitochondria-Involved Apoptosis Pathway

Download (2.06 MB)
journal contribution
posted on 24.03.2015, 00:00 by Zhiyao Hou, Yuanxin Zhang, Kerong Deng, Yinyin Chen, Xuejiao Li, Xiaoran Deng, Ziyong Cheng, Hongzhou Lian, Chunxia Li, Jun Lin
Photodynamic therapy (PDT) is a promising antitumor treatment that is based on the photosensitizers that inhibit cancer cells by yielding reactive oxygen species (ROS) after irradiation of light with specific wavelengths. As a potential photosensitizer, titanium dioxide (TiO2) exhibits minimal dark cytotoxicity and excellent ultraviolet (UV) light triggered cytotoxicity, but is challenged by the limited tissue penetration of UV light. Herein, a novel near-infrared (NIR) light activated photosensitizer for PDT based on TiO2-coated upconversion nanoparticle (UCNP) core/shell nanocomposites (UCNPs@TiO2 NCs) is designed. NaYF4:Yb3+,Tm3+@NaGdF4:Yb3+ core/shell UCNPs can efficiently convert NIR light to UV emission that matches well with the absorption of TiO2 shells. The UCNPs@TiO2 NCs endocytosed by cancer cells are able to generate intracellular ROS under NIR irradiation, decreasing the mitochondrial membrane potential to release cytochrome c into the cytosol and then activating caspase 3 to induce cancer cell apoptosis. NIR light triggered PDT of tumor-bearing mice with UCNPs@TiO2 as photosensitizers can suppress tumor growth efficiently due to the better tissue penetration than UV irradiation. On the basis of the evidence of in vitro and in vivo results, UCNPs@TiO2 NCs could serve as an effective photosensitizer for NIR light mediated PDT in antitumor therapy.

History

Exports