ac3027349_si_001.pdf (1.55 MB)

Microscale Freeze-Drying with Raman Spectroscopy as a Tool for Process Development

Download (1.55 MB)
journal contribution
posted on 19.02.2013, 00:00 by Ari Kauppinen, Maunu Toiviainen, Jaakko Aaltonen, Ossi Korhonen, Kristiina Järvinen, Mikko Juuti, Riikka Pellinen, Jarkko Ketolainen
Until recently, the freeze-drying process and formulation development have suffered from a lack of microscale analytical tools. Using such an analytical tool should decrease the required sample volume and also shorten the duration of the experiment compared to a laboratory scale setup. This study evaluated the applicability of Raman spectroscopy for in-line monitoring of a microscale freeze-drying process. The effect of cooling rate and annealing step on the solid-state formation of mannitol was studied. Raman spectra were subjected to principal component analysis to gain a qualitative understanding of the process behavior. In addition, mannitol solid-state form ratios were semiquantitatively analyzed during the process with a classical least-squares regression. A standard cooling rate of 1 °C/min with or without an annealing step at −10 °C resulted in a mixture of α, β, δ, and amorphous forms of mannitol. However, a standard cooling rate induced the formation of mannitol hemihydrate, and a secondary drying temperature of +60 °C was required to transform the hemihydrate form to the more stable anhydrous polymorphs. A fast cooling rate of 10 °C/min mainly produced δ and amorphous forms of mannitol, regardless of annealing. These results are consistent with those from larger scale equipment. In-line monitoring the solid-state form of a sample is feasible with a Raman spectrometer coupled microscale freeze-drying stage. These results demonstrate the utility of a rapid, in-line, low sample volume method for the semiquantitative analysis of the process and formulation development of freeze-dried products on the microscale.