figshare
Browse

The sliding window method constructs the input sequence and the target sequence.

Download (5.5 MB)
figure
posted on 2025-05-02, 17:38 authored by Tianwen Zhao, Guoqing Chen, Sujitta Suraphee, Tossapol Phoophiwfa, Piyapatr Busababodhin

The sliding window method constructs the input sequence and the target sequence.

History

Usage metrics

0
0
0
    PLOS ONE

    Categories

    • Sociology
    • Biological Sciences not elsewhere classified
    • Information Systems not elsewhere classified
    • Science Policy
    • Infectious Diseases
    • Plant Biology

    Keywords

    temporal feature extractionsliding window techniqueexperimental results demonstrate3 %, underscoringforecasting agricultural pricesagricultural market decisionmodel uses 65integrated forecasting modeldramatic price movementsxgboost &# 8217model nonlinear relationshipssignificant price fluctuationsxgboost model achievesprice fluctuationsxgboost modelagricultural marketsprice changesnonlinear naturedemand fluctuationsxgboost enhancessuperior performancerobust solutionpolicy changesoften faillinear assumptionshybrid modelsbroader macroeconomybroad applicabilityalso outperforms9 %)29 ).1 %).

    Licence

    CC BY 4.0CC BY 4.0

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC
    • About
    • Solutions
    • Tools
    • Blog
    • Contact
    • Help
    • Privacy Policy
    • Cookie Settings
    • Terms
    • Sitemap
    facebook pageX pagevimeo page
    figshare. credit for all your research.
    Digital ScienceDataCiteCOPEData Citation IndexOpen Access