The sliding window method constructs the input sequence and the target sequence.
figure
posted on 2025-05-02, 17:38 authored by Tianwen Zhao, Guoqing Chen, Sujitta Suraphee, Tossapol Phoophiwfa, Piyapatr BusababodhinThe sliding window method constructs the input sequence and the target sequence.
History
Usage metrics
Categories
Keywords
temporal feature extractionsliding window techniqueexperimental results demonstrate3 %, underscoringforecasting agricultural pricesagricultural market decisionmodel uses 65integrated forecasting modeldramatic price movementsxgboost 8217model nonlinear relationshipssignificant price fluctuationsxgboost model achievesprice fluctuationsxgboost modelagricultural marketsprice changesnonlinear naturedemand fluctuationsxgboost enhancessuperior performancerobust solutionpolicy changesoften faillinear assumptionshybrid modelsbroader macroeconomybroad applicabilityalso outperforms9 %)29 ).1 %).
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC