Support Information
Abstract Epoxy nanocomposites are widely used in various applications because of their excellent properties. Different types of manufacturing techniques are used to produce epoxy composites based on various fillers, molecular weight, and applications required. The physical properties and chemical structure of epoxy resin help in determining the method for its manufacturing. Coatings and adhesive formulations are prepared using high- molecular-weight epoxies, whereas epoxy nanocomposites require low-molecular-weight epoxies due to ease of manufacturing. A low-molecular-weight epoxy can provide high crosslink density to the epoxy but may also cause inherent brittleness in epoxy nanocomposites. Further, the addition of CNTs may also cause more brittleness in the final product. In this work, the authors have developed a method to process composites based on high-molecular-weight epoxy reinforced with high loading of CNTs (15 wt.%). The high molecular weight will bring lots of challenges during manufacturing. In this paper, a novel manufacturing technique based on separate molding and curing conditions to produce highly concentrated CNT-filled epoxy with high-molecular-weight epoxy resin is described, achieving excellent mechanical properties, good toughness, and high electrical conductivity in an efficient, low-cost, environmentally friendly, and high-volume way. The findings demonstrated improvements in these mechanical properties compared to conventional systems. They also highlight the potential of the novel method to develop advanced composite materials which can revolutionize industrial sectors such as aerospace, automotives, and electronics where structural integrity and thermal stability are important.
Keywords: composites; CNT-filled epoxy; isothermal curing; ramped curing; curing
dynamics; injection molding