Image_1_Genomic Epidemiology of Salmonella Infantis in Ecuador: From Poultry Farms to Human Infections.pdf
Salmonella enterica is one of the most important foodborne pathogens around the world. In the last years, S. enterica serovar Infantis has become an important emerging pathogen in many countries, often as multidrug resistant clones. To understand the importance of S. enterica in the broiler industry in Ecuador, we performed a study based on phenotypic and WGS data of isolates from poultry farms, chicken carcasses and humans. We showed a high prevalence of S. enterica in poultry farms (41.4%) and chicken carcasses (55.5%), but a low prevalence (1.98%) in human samples. S. Infantis was shown to be the most prevalent serovar with a 98.2, 97.8, and 50% in farms, foods, and humans, respectively, presenting multidrug resistant patterns. All sequenced S. Infantis isolates belonged to ST32. For the first time, a pESI-related megaplasmid was identified in Ecuadorian samples. This plasmid contains genes of antimicrobial resistance, virulence factors, and environmental stress tolerance. Genomic analysis showed a low divergence of S. Infantis strains in the three analyzed components. The results from this study provide important information about genetic elements that may help understand the molecular epidemiology of S. Infantis in Ecuador.
History
References
- https://doi.org//10.1016/j.cmi.2015.12.004
- https://doi.org//10.2903/j.efsa.2019.5596
- https://doi.org//10.4315/0362-028X.JFP-14-349
- https://doi.org//10.1016/j.ijfoodmicro.2019.03.014
- https://doi.org//10.1371/journal.pone.0159567
- https://doi.org//10.3382/ps/peu081
- https://doi.org//10.3201/eid2412.180500
- https://doi.org//10.1016/j.bjid.2016.03.007
- https://doi.org//10.1128/AAC.00488-17
- https://doi.org//10.1128/9781555819804.ch12
- https://doi.org//10.1111/j.1462-5822.2009.01368.x
- https://doi.org//10.1016/j.mimet.2011.02.002
- https://doi.org//10.1093/jac/dki190
- https://doi.org//10.1089/mdr.2004.10.334
- https://doi.org//10.1128/AAC.48.11.4263-4270.2004
- https://doi.org//10.1016/S0378-1097(97)00196-1
- https://doi.org//10.1128/JCM.01542-07
- https://doi.org//10.1128/AAC.01511-05
- https://doi.org//10.1016/j.ijantimicag.2006.03.027
- https://doi.org//10.3201/eid1205.050910
- https://doi.org//10.1093/jac/dks049
- https://doi.org//10.1093/jac/dks261
- https://doi.org//10.1093/bioinformatics/btu170
- https://doi.org//10.12688/f1000research.15931.2
- https://doi.org//10.1093/bioinformatics/btw354
- https://doi.org//10.1128/JCM.00323-15
- https://doi.org//10.1099/mgen.0.000131
- https://doi.org//10.12688/wellcomeopenres.14826.1
- https://doi.org//10.1128/AAC.02412-14
- https://doi.org//10.1128/MRA.00826-19
- https://doi.org//10.1093/bioinformatics/btp698
- https://doi.org//10.1093/bioinformatics/btp352
- https://doi.org//10.1101/849372
- https://doi.org//10.1093/bioinformatics/btu153
- https://doi.org//10.1186/1471-2105-12-124
- https://doi.org//10.7717/peerj.4958
- https://doi.org//10.1371/journal.pone.0011147
- https://doi.org//10.1007/s10482-017-0844-4
- https://doi.org//10.1007/978-3-642-37195-0_13
- https://doi.org//10.1093/nar/gkf436
- https://doi.org//10.1093/nar/gkz239
- https://doi.org//10.1089/fpd.2010.0787
- https://doi.org//10.2903/j.efsa.2014.3547
- https://doi.org//10.1186/s12864-019-6260-6
- https://doi.org//10.4315/0362-028X.JFP-11-458
- https://doi.org//10.4269/ajtmh.13-0744
- https://doi.org//10.1002/jmv.21181
- https://doi.org//10.1093/aje/kws220
- https://doi.org//10.1016/j.tim.2014.06.007
- https://doi.org//10.2903/j.efsa.2018.5500
- https://doi.org//10.4315/0362-028X-70.9.2030
- https://doi.org//10.1590/S1020-49892011001200010
- https://doi.org//10.3390/ani10061049
- https://doi.org//10.1128/AEM.00598-11
- https://doi.org//10.3382/ps/pex406
- https://doi.org//10.17843/rpmesp.2016.331.1899
- https://doi.org//10.1637/10873-052714-Reg
- https://doi.org//10.2903/j.efsa.2020.6007
- https://doi.org//10.1073/pnas.1503141112
- https://doi.org//10.3389/fmicb.2017.01322
- https://doi.org//10.1016/j.ijfoodmicro.2019.108497
- https://doi.org//10.1111/jam.14282
- https://doi.org//10.1016/j.apjtb.2017.07.002
- https://doi.org//10.1111/1462-2920.12351
- https://doi.org//10.1371/journal.pone.0144802
- https://doi.org//10.1093/gbe/evaa048
- https://doi.org//10.1128/IAI.01428-05
- https://doi.org//10.1128/JB.184.9.2352-2359.2002
- https://doi.org//10.1371/journal.pone.0224518
- https://doi.org//10.1046/j.1365-2958.2002.03121.x
Usage metrics
Read the peer-reviewed publication
Categories
- Animal Systematics and Taxonomy
- Veterinary Anaesthesiology and Intensive Care
- Veterinary Anatomy and Physiology
- Veterinary Diagnosis and Diagnostics
- Veterinary Epidemiology
- Veterinary Immunology
- Veterinary Medicine
- Veterinary Microbiology (excl. Virology)
- Veterinary Parasitology
- Veterinary Pathology
- Veterinary Pharmacology
- Veterinary Surgery
- Veterinary Virology
- Veterinary Sciences not elsewhere classified
- Animal Physiology - Biophysics
- Animal Physiology - Cell
- Animal Physiology - Systems
- Animal Behaviour
- Animal Cell and Molecular Biology
- Animal Developmental and Reproductive Biology
- Animal Immunology
- Animal Neurobiology
- Animal Physiological Ecology
- Animal Structure and Function