Image3_Gremlin2 Activates Fibroblasts to Promote Pulmonary Fibrosis Through the Bone Morphogenic Protein Pathway.TIF
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease causing unremitting extracellular matrix deposition. Transforming growth factor-β (TGF-β) superfamily involves bone morphogenetic proteins (BMPs) and TGF-β, and the balance between the activation of TGF-β-dependent SMADs (Smad2/3) and BMP-dependent SMADs (Smad1/5/8) is essential for fibrosis process. GREM2, initially identified as a TGF-β-inducible gene, encodes a small secreted glycoprotein belonging to a group of matricellular proteins, its role in lung fibrosis is not clear. Here, we identified Gremlin2 as a key regulator of fibroblast activation. Gremlin2 was highly expressed in the serum and lung tissues in IPF patients. Bleomycin-induced lung fibrosis model exhibited high expression of Gremlin2 in the bronchoalveolar lavage fluid (BALF) and lung tissue. Isolation of primary cells from bleomycin-induced fibrosis lung showed a good correlation of Gremlin2 and Acta2 (α-SMA) expressions. Overexpression of Gremlin2 in human fetal lung fibroblast 1 (HFL-1) cells increased its invasion and migration. Furthermore, Gremlin2 regulates fibrosis functions through mediating TGF-β/BMP signaling, in which Gremlin2 may activate TGF-β signaling and inhibit BMP signaling. Therefore, we provided in vivo and in vitro evidence to demonstrate that Gremlin2 may be a potential therapeutic target for the treatment of IPF.
History
References
- https://doi.org//10.1165/rcmb.2015-0040OC
- https://doi.org//10.1016/j.biocel.2008.02.012
- https://doi.org//10.1164/ajrccm.161.2.ats3-00
- https://doi.org//10.1183/09059180.00003214
- https://doi.org//10.4049/jimmunol.173.3.2099
- https://doi.org//10.1164/rccm.200405-612OC
- https://doi.org//10.1016/j.yexcr.2010.01.021
- https://doi.org//10.1016/j.mam.2018.08.004
- https://doi.org//10.1038/ncomms12564
- https://doi.org//10.1152/ajprenal.00344.2016
- https://doi.org//10.1186/s12931-015-0202-x
- https://doi.org//10.1084/jem.20121878
- https://doi.org//10.1016/s0140-6736(12)61144-1
- https://doi.org//10.1073/pnas.1007293108
- https://doi.org//10.1038/s41586-020-2938-9
- https://doi.org//10.1016/j.str.2013.07.015
- https://doi.org//10.2353/ajpath.2007.070112
- https://doi.org//10.1073/pnas.1603534113
- https://doi.org//10.1016/s1097-2765(00)80067-2
- https://doi.org//10.1038/srep14910
- https://doi.org//10.1186/s12931-019-1093-z
- https://doi.org//10.1074/jbc.M610764200
- https://doi.org//10.1016/j.jmb.2012.10.003
- https://doi.org//10.1042/bcj-2016-1050_cor
- https://doi.org//10.1016/s0140-6736(11)60052-4
- https://doi.org//10.1371/journal.pone.0159010
- https://doi.org//10.1074/jbc.M113.546077
- https://doi.org//10.3892/mmr.2017.7636
- https://doi.org//10.1084/jem.20102510
- https://doi.org//10.1038/nm.4192
- https://doi.org//10.1126/scitranslmed.3001564
- https://doi.org//10.1038/nrdp.2017.74
- https://doi.org//10.7326/0003-4819-142-12_part_1-200506210-00005
- https://doi.org//10.1038/nrneph.2016.48
- https://doi.org//10.1093/ndt/gfx194
- https://doi.org//10.1164/rccm.200706-945OC
- https://doi.org//10.1002/path.2300
- https://doi.org//10.1126/scitranslmed.aaw1237
- https://doi.org//10.1172/jci60323
- https://doi.org//10.1016/j.str.2013.06.005
- https://doi.org//10.1016/j.celrep.2016.07.046
- https://doi.org//10.1164/rccm.2009-040GL
- https://doi.org//10.1080/15384101.2019.1646561
- https://doi.org//10.1161/circresaha.116.308700
- https://doi.org//10.1016/s0925-4773(98)00139-7
- https://doi.org//10.3389/fmed.2017.00118
- https://doi.org//10.1183/09031936.00077309
- https://doi.org//10.1152/ajplung.00037.2018
- https://doi.org//10.1016/j.biochi.2019.02.015
- https://doi.org//10.1146/annurev-pathol-012513-104706
- https://doi.org//10.1038/s41467-018-07858-8
- https://doi.org//10.1172/jci85328
- https://doi.org//10.1016/j.celrep.2018.03.010
- https://doi.org//10.1096/fj.11-200139
- https://doi.org//10.1152/ajplung.00523.2016