figshare
Browse

Flowchart of waterlogging depth prediction based on BiTCN-GRU model (Includes BiTCN and GRU model components).

Download (1.67 MB)
figure
posted on 2025-04-23, 17:31 authored by Quan Wang, Mingjie Tang, Pei Shi

Flowchart of waterlogging depth prediction based on BiTCN-GRU model (Includes BiTCN and GRU model components).

History

Usage metrics

0
0
0
    PLOS ONE

    Categories

    • Environmental Sciences not elsewhere classified
    • Biological Sciences not elsewhere classified
    • Information Systems not elsewhere classified
    • Mathematical Sciences not elsewhere classified

    Keywords

    limited generalization capabilitieshybrid deep learninggated recurrent unitsextreme weather eventsexperimental results demonstratelow prediction accuracyhuaihe road datasetsinduced urban waterloggingterm waterlogging predictionhybrid model providespredicting waterlogging depthenhance prediction performancediv >< p2 urban waterlogging basedwaterlogging depthdepth predictionurban floodprediction taskminshan roadgreat performancebased approachproposed modeltheoretical supportrobust solutionrapid urbanizationprone areaspressing challengepaper proposesloss mitigationinformation featuresincreasing frequencyeffectively capturedisaster preventioncomplex structureschina ’backward convolutionachieving mae

    Licence

    CC BY 4.0CC BY 4.0

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC
    • About
    • Solutions
    • Tools
    • Blog
    • Contact
    • Help
    • Privacy Policy
    • Cookie Settings
    • Terms
    • Sitemap
    facebook pageX pagevimeo page
    figshare. credit for all your research.
    Digital ScienceDataCiteCOPEData Citation IndexOpen Access