12866_2020_1795_MOESM3_ESM.tif (361.89 kB)
Download fileAdditional file 3 of Optimizing 16S rRNA gene profile analysis from low biomass nasopharyngeal and induced sputum specimens
figure
posted on 2020-05-13, 03:40 authored by Shantelle Claassen-Weitz, Sugnet Gardner-Lubbe, Kilaza S. Mwaikono, Elloise du Toit, Heather J. Zar, Mark P. NicolAdditional file 3. Bacterial composition of Zymobiomics-DNA (n = 8) compared to Zymobiomics-Primestore-high (n = 6) and Zymobiomics-STGG-high (n = 6). The two high biomass mock communities, Zymobiomics-Primestore-high and Zymobiomics-STGG-high, represent triplicate extractions using two extraction methods (blue filled circles: Kit-QS and red filled circles: Kit-ZB). Zymobiomics-DNA (darkgreen filled circles) were included to validate sequencing profiles generated using the two extraction methods. Unsupervised hierarchical clustering distances are based on Bray Curtis dissimilarity indices calculated at OTU-level. Differences between bacterial mock controls are shown at genus-level, with colour-codes representing phylum-level classification (Shades of blue: Proteobacteria, shades of red: Firmicutes). Genera with proportions < 1% in each of the specimens are grouped together as “Other” and shown in grey.
Funding
Foundation for the National Institutes of Health Bill and Melinda Gates Foundation
History
References
- 10.3343/alm.2016.36.5.441
- 10.1007/s11046-017-0185-x
- 10.18632/oncotarget.21490
- 10.1016/j.chom.2017.03.010
- 10.1016/j.molmet.2016.06.002
- 10.1016/j.resinv.2018.08.003
- 10.1016/S2213-2600(14)70028-1
- 10.1128/mBio.02287-16
- 10.1038/srep23129
- 10.1186/s40168-017-0268-4
- 10.1016/j.placenta.2016.12.003
- 10.1111/1471-0528.15896
- 10.1186/s12866-019-1560-1
- 10.1371/journal.pone.0218257
- 10.1186/s41479-018-0051-8
- 10.1186/s40168-016-0172-3
- 10.1186/s12915-014-0087-z
- 10.1186/s40168-017-0267-5
- 10.1128/mSystems.00186-19
- 10.1186/s40168-015-0083-8
- 10.1016/j.mimet.2005.10.005
- 10.1128/AEM.02627-17
- 10.1016/j.ijmm.2016.03.005
- 10.1038/nrmicro.2017.14
- 10.1038/s41598-016-0028-x
- 10.1183/23120541.00019-2017
- 10.3389/fmicb.2017.02276
- 10.2169/internalmedicine.51.6018
- 10.1056/NEJMra070741
- 10.1016/j.ajog.2018.10.018
- 10.1371/journal.pone.0034605
- 10.3402/jom.v6.23990
- 10.1038/s41598-019-56847-4
- 10.1371/journal.pcbi.1006102
- 10.1186/s12866-016-0738-z
- 10.1186/s12864-015-2194-9
- 10.1186/s12866-015-0351-6
- 10.1128/AEM.02206-14
- 10.1186/s40168-019-0755-x
- 10.1007/s00253-012-4244-4
- 10.1371/journal.pone.0141158
- 10.1038/s41598-018-19574-w
- 10.1111/lam.13091
- 10.3389/fmicb.2019.01124
- 10.1128/AEM.68.4.1548-1555.2002
- 10.1556/AMicr.60.2013.3.9
- 10.1186/s13099-016-0103-7
- 10.1186/s12866-016-0689-4
- 10.1073/pnas.1705899114
- 10.1111/jvim.15043
- 10.1186/s12890-015-0128-6
- 10.1017/S0950268810002384
- 10.1016/S2213-2600(16)00096-5
- 10.1016/j.vaccine.2013.08.062
- 10.1371/journal.pntd.0005975
- 10.1038/s41598-018-22244-6
- 10.1073/pnas.1000080107
- 10.1093/bioinformatics/btw354
- 10.1038/nmeth.2604
- 10.1038/nmeth.f.303
- 10.1093/nar/gkm864
- 10.1093/nar/gks1219
- 10.1128/AEM.00062-07
- 10.1038/nbt.3820
- 10.1186/gb-2010-11-10-r106
- 10.1371/journal.pcbi.1003531
- 10.1186/2049-2618-2-15
- 10.1002/j.1538-7305.1948.tb01338.x
- 10.1002/9780470973196
- 10.1111/1467-9876.00275
- 10.1371/journal.pcbi.1002808
- 10.1007/BF00038687
- 10.2307/1942268