Tweets discussing the Russia/Ukraine War
We used the Twitter API (V2) to collect all tweets, retweets, quotes and replies containing case-insensitive versions of the hashtags: #(I)StandWithPutin, #(I)StandWithRussia, #(I)SupportRussia, #(I)StandWithUkraine, #(I)StandWithZelenskyy and #(I)SupportUkraine. These were obtained from February 23rd 2022 00:00:00 UTC until March 8th 2022 23:59:59 UTC, the fortnight after Russia invaded Ukraine. We queried the hashtags with and without the `I', a total of 12 query hashtags, collecting 5,203,746 tweets. The data collected predates the beginning of the Russian invasion by one day. These hashtags were chosen as they were found to be the most trending hashtags related to the Russia/Ukraine war which could be easily identified with a particular side in the conflict.
We calculated Botometer results on 483,100 (26.5%) of accounts. These accounts were randomly sampled from a list of all unique users in our dataset which posted in English. This random sample leads to an approximately uniform frequency of Tweets from accounts with Botometer labels across the time frame we considered. We include the language dependent and language independent results from Botometer, including the Complete Automation Probabilities (CAP) and each of the sub-category scores for different bot types. Moreoever, we include the display scores and raw scores from Botometer for each account. More information about the Botometer scores can be found at this link: https://rapidapi.com/OSoMe/api/botometer-pro/details
You can find our paper here: https://arxiv.org/abs/2208.07038
History
References
Usage metrics
Categories
- Applied statistics
- Applied mathematics not elsewhere classified
- Dynamical systems in applications
- Statistics not elsewhere classified
- Applied computing not elsewhere classified
- Coding, information theory and compression
- Theory of computation not elsewhere classified
- Human information behaviour
- Natural language processing
- Numerical computation and mathematical software
- Time-series analysis