Thermoelectric properties of sorted semiconducting single-walled carbon nanotube sheets
Single-walled carbon nanotubes (SWNTs), especially their semiconducting type, are promising thermoelectric (TE) materials due to their high Seebeck coefficient. In this study, the in-plane Seebeck coefficient (S), electrical conductivity (σ), and thermal conductivity (κ) of sorted semiconducting SWNT (s-SWNT) free-standing sheets with different s-SWNT purities are measured to determine the figure of merit ZT. We find that the ZT value of the sheets increases with increasing s-SWNT purity, mainly due to an increase in Seebeck coefficient while the thermal conductivity remaining constant, which experimentally proved the superiority of the high purity s-SWNT as TE materials for the first time. In addition, from the comparison between sorted and unsorted SWNT sheets, it is recognized that the difference of ZT between unsorted SWNT and high-purity s-SWNT sheet is not remarkable, which suggests the control of carrier density is necessary to further clarify the superiority of SWNT sorting for TE applications.
Funding
This work was supported by the Nanotechnology Platform Project, from the Ministry of Education, Culture, Sports, Science and Technology, Japan, KAKENHI [No. JP18H01816, JP16K14084, and JP16H06056]; Japan Society for the Promotion of Science, and PRESTO [JPMJPR15R6].
History
Usage metrics
Categories
- Biophysics
- Biochemistry
- Space Science
- Physical Sciences not elsewhere classified
- Pharmacology
- Biotechnology
- Environmental Sciences not elsewhere classified
- Chemical Sciences not elsewhere classified
- Biological Sciences not elsewhere classified
- Information Systems not elsewhere classified
- Computational Biology