4 files

Resting-State Connectivity of the Sustained Attention Network Correlates with Disease Duration in Idiopathic Generalized Epilepsy

posted on 2012-12-05, 01:48 authored by Mona Maneshi, Friederike Moeller, Firas Fahoum, Jean Gotman, Christophe Grova


In idiopathic generalized epilepsy (IGE), a normal electroencephalogram between generalized spike and wave (GSW) discharges is believed to reflect normal brain function. However, some studies indicate that even excluding GSW-related errors, IGE patients perform poorly on sustained attention task, the deficit being worse as a function of disease duration. We hypothesized that at least in a subset of structures which are normally involved in sustained attention, resting-state functional connectivity (FC) is different in IGE patients compared to controls and that some of the changes are related to disease duration.


Seeds were selected based on a sustained attention study in controls. Resting-state functional magnetic resonance imaging (fMRI) data was obtained from 14 IGE patients and 14 matched controls. After physiological noise removal, the mean time-series of each seed was used as a regressor in a general linear model to detect regions that showed correlation with the seed. In patients, duration factor was defined based on epilepsy duration. Between-group differences weighted by the duration factor were evaluated with mixed-effects model. Correlation was then evaluated in IGE patients between the FC, averaged over each significant cluster, and the duration factor.


Eight of 18 seeds showed significant difference in FC across groups. However, only for seeds in the medial superior frontal and precentral gyri and in the medial prefrontal area, average FC taken over significant clusters showed high correlation with the duration factor. These 3 seeds showed changes in FC respectively with the premotor and superior frontal gyrus, the dorsal premotor, and the supplementary motor area plus precentral gyrus.


Alterations of FC in IGE patients are not limited to the frontal areas. However, as indicated by specificity analysis, patients with long history of disease show changes in FC mainly within the frontal areas.


Usage metrics