figshare
Browse

Mean Annual Forest Gross Primary Productivity in China (1990-2018)

Download (3.39 MB)
dataset
posted on 2025-04-21, 03:24 authored by Pedro CabralPedro Cabral, Chenxi Zhu

The mean annual forest GPP in China from 1990 to 2018 (gC m-2 y-1) was calculated using a random forest model, which had a R² of 0.73, a mean absolute error (MAE) of 208.13, and a root mean square error (RMSE) of 325.97, based on the variables listed in Table 1. All the datasets were extracted from open data sources available in the National Tibetan Plateau Scientific Data Center (https://data.tpdc.ac.cn/). All the raster data was upscaled to 0.1º with a bilinear resample function and used a WGS 1984 World Mercator projection.

The dataset has the following files:

· Shapefile with dependent (mean forest GPP) and independent variables for China between 1990 and 2018 using data described in Table 1.

· Tif file with mean forest GPP for China between 1990 and 2018 using data from (Wang et al., 2021).


Details about the methodology to build this dataset can be found in:

Zhu, C., Wang, G., Shao, Y., Dai, W., Liu, Q., Wang, S., Costa, A. C., & Cabral, P. (2025). Disentangling Gross Primary Productivity drivers of forested areas in China and its climate zones from 1990 to 2018. Journal of Cleaner Production, 145616. https://doi.org/10.1016/j.jclepro.2025.145616


Table 1. Variables used in the Random Forest Model

Variable

Units

Original data source

Mean Forest Gross Primary Productivity (dependent variable)

gC m-2 d-1

(Wang et al., 2021)

Temperature

ºC

(Peng et al., 2019)

Precipitation

0.1mm

(Peng et al., 2019)

Downward shortwave radiation

W m−2

(He et al., 2020)

Soil moisture

m3 m−3

(Zhang et al., 2024)

Nighttime light

Digital Number

(L. Zhang et al., 2024)

Forest fragmentation index

[0, 1]

Derived from landcover map (Yang & Huang, 2021)

Digital Elevation Model (DEM)

m

(CGIAR-CSI, 2022)

Aspect

Degree

Derived from DEM(CGIAR-CSI, 2022)

Slope

Degree

Derived from DEM(CGIAR-CSI, 2022)

Climate zones (vector file)


(Kottek et al., 2006)


References

CGIAR-CSI. (2022). SRTM DEM dataset in China (2000). In National Tibetan Plateau Data Center. National Tibetan Plateau Data Center. https://dx.doi.org/

He, J., Yang, K., Tang, W., Lu, H., Qin, J., Chen, Y., & Li, X. (2020). The first high-resolution meteorological forcing dataset for land process studies over China. Scientific Data, 7(1), 25. https://doi.org/10.1038/s41597-020-0369-y

Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. https://doi.org/10.1127/0941-2948/2006/0130

Peng, S., Ding, Y., Liu, W., & Li, Z. (2019). 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth System Science Data, 11(4), 1931–1946. https://doi.org/10.5194/essd-11-1931-2019

Wang, S., Zhang, Y., Ju, W., Qiu, B., & Zhang, Z. (2021). Tracking the seasonal and inter-annual variations of global gross primary production during last four decades using satellite near-infrared reflectance data. Science of The Total Environment, 755, 142569. https://doi.org/10.1016/j.scitotenv.2020.142569

Yang, J., & Huang, X. (2021). The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth System Science Data, 13(8), 3907–3925. https://doi.org/10.5194/essd-13-3907-2021

Zhang, K., Chen, H., Ma, N., Shang, S., Wang, Y., Xu, Q., & Zhu, G. (2024). A global dataset of terrestrial evapotranspiration and soil moisture dynamics from 1982 to 2020. Scientific Data, 11(1), 445. https://doi.org/10.1038/s41597-024-03271-7

Zhang, L., Ren, Z., Chen, B., Gong, P., Xu, B., & Fu, H. (2024). A Prolonged Artificial Nighttime-light Dataset of China (1984-2020). Scientific Data, 11(1), 414. https://doi.org/10.1038/s41597-024-03223-1


Funding

National Natural Science Foundation of China (#42275028)

FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 (DOI: 10.54499/UIDB/04152/2020) - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS)

History

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC