pr8b00556_si_001.xlsx (1.04 MB)
Download file

LasB and CbpD Virulence Factors of Pseudomonas aeruginosa Carry Multiple Post-Translational Modifications on Their Lysine Residues

Download (1.04 MB)
posted on 2019-01-23, 00:00 authored by Charlotte Gaviard, Pascal Cosette, Thierry Jouenne, Julie Hardouin
Pseudomonas aeruginosa is a multi-drug resistant human pathogen largely involved in nosocomial infections. Today, effective antibacterial agents are lacking. Exploring the bacterial physiology at the post-translational modifications (PTM) level may contribute to the renewal of fighting strategies. Indeed, some correlations between PTMs and the bacterial virulence, adaptation, and resistance have been shown. In a previous study performed in P. aeruginosa, we reported that many virulence factors like chitin-binding protein CbpD and elastase LasB were multiphosphorylated. Besides phosphorylation, other PTMs, like those occurring on lysine, seem to play key roles in bacteria. In the present study, we investigated for the first time the lysine succinylome and acetylome of the extracellular compartment of P. aeruginosa by using a two-dimensional immunoaffinity approach. Some virulence factors were identified as multimodified on lysine residues, among them, LasB and CbpD. Lysine can be modified by a wide range of chemical groups. In order to check the presence of other chemical groups on modified lysines identified on LasB and CbpD, we used 1- and 2- dimensional gel electrophoresis approaches to target lysine modified by 7 other modifications: butyrylation, crotonylation, dimethylation, malonylation, methylation, propionylation, and trimethylation. We showed that some lysines of these two virulence factors were modified by these 9 different PTMs. Interestingly, we found that the PTMs recovered on these two virulence factors were different than those previously reported in the intracellular compartment.