figshare
Browse
.H5
Subject5_Imagery.h5 (849.8 MB)
.H5
Subject1_ImageNetTest.h5 (1.54 GB)
.H5
Subject1_ImageNetTraining.h5 (1.25 GB)
.H5
Subject1_Imagery.h5 (910.14 MB)
.H5
Subject2_ImageNetTest.h5 (1.49 GB)
.H5
Subject2_ImageNetTraining.h5 (1.21 GB)
.H5
Subject2_Imagery.h5 (881.13 MB)
.H5
Subject3_ImageNetTest.h5 (1.96 GB)
.H5
Subject3_ImageNetTraining.h5 (1.59 GB)
.H5
Subject3_Imagery.h5 (1.13 GB)
.H5
Subject4_ImageNetTest.h5 (1.43 GB)
.H5
Subject4_ImageNetTraining.h5 (1.16 GB)
.H5
Subject4_Imagery.h5 (864.41 MB)
.H5
Subject5_ImageNetTest.h5 (1.45 GB)
.H5
Subject5_ImageNetTraining.h5 (1.18 GB)
.H5
Subject5.h5 (115.87 MB)
.H5
Subject4.h5 (109.59 MB)
.H5
Subject3.h5 (123.1 MB)
.H5
Subject2.h5 (116.77 MB)
.H5
Subject1.h5 (118.41 MB)
1/0
32 files

Generic Object Decoding

Version 6 2020-10-15, 16:10
Version 5 2020-07-27, 07:39
Version 4 2019-05-08, 03:01
Version 3 2019-04-30, 09:14
Version 2 2019-01-15, 09:15
Version 1 2018-11-27, 10:30
dataset
posted on 2020-10-15, 16:10 authored by Kamitani LabKamitani Lab, Tomoyasu Horikawa, Yukiyasu Kamitani
Here we provide preprocessed fMRI data and image features from Horikawa & Kamitani (2017) Generic decoding of seen and imagined objects using hierarchical visual features. Nat Commun.

Raw (unpreprocessed) fMRI data are available at OpenNeuro.

Analysis demo code is available at GitHub.

History:

2020-10-16 fMRI data preprocessed with fmriprep were updated (Subject*_ImageNetTraining.h5, Subject*_ImageNetTest.h5, and Subject*_Imagery.h5).

2020-07-27 'category_index' and 'image_index' in fMRI data files (Subject*.h5) were fixed.

2019-05-08 fMRI data mat files were replaced with h5 files.

History

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC