2 files

Generation of Anti-Murine ADAMTS13 Antibodies and Their Application in a Mouse Model for Acquired Thrombotic Thrombocytopenic Purpura

posted on 01.08.2016, 17:36 authored by Louis Deforche, Claudia Tersteeg, Elien Roose, Aline Vandenbulcke, Nele Vandeputte, Inge Pareyn, Elien De Cock, Hanspeter Rottensteiner, Hans Deckmyn, Simon F. De Meyer, Karen Vanhoorelbeke

Thrombotic thrombocytopenic purpura (TTP) is a life-threatening thrombotic microangiopathy linked to a deficiency in the metalloprotease ADAMTS13. In the current study, a novel mouse model for acquired TTP was generated to facilitate development and validation of new therapies for this disease. Therefore, a large panel (n = 19) of novel anti-mouse ADAMTS13 (mADAMTS13) monoclonal antibodies (mAbs) of mouse origin was generated. Inhibitory anti-mADAMTS13 mAbs were identified using the FRETS-VWF73 assay. Four mAbs strongly inhibited mADAMTS13 activity in vitro (∼68–90% inhibition). Injecting a combination of 2 inhibitory mAbs (13B4 and 14H7, 1.25 mg/kg each) in Adamts13+/+ mice resulted in full inhibition of plasma ADAMTS13 activity (96 ± 4% inhibition, day 1 post injection), leading to the appearance of ultra-large von Willebrand factor (UL-VWF) multimers. Interestingly, the inhibitory anti-mADAMTS13 mAbs 13B4 and 14H7 were ideally suited to induce long-term ADAMTS13 deficiency in Adamts13+/+ mice. A single bolus injection resulted in full ex vivo inhibition for more than 7 days. As expected, the mice with the acquired ADAMTS13 deficiency did not spontaneously develop TTP, despite the accumulation of UL-VWF multimers. In line with the Adamts13-/- mice, TTP-like symptoms could only be induced when an additional trigger (rVWF) was administered. On the other hand, the availability of our panel of anti-mADAMTS13 mAbs allowed us to further develop a sensitive ELISA to detect ADAMTS13 in mouse plasma. In conclusion, a novel acquired TTP mouse model was generated through the development of inhibitory anti-mADAMTS13 mAbs. Consequently, this model provides new opportunities for the development and validation of novel treatments for patients with TTP. In addition, these newly developed inhibitory anti-mADAMTS13 mAbs are of great value to specifically study the role of ADAMTS13 in mouse models of thrombo-inflammatory disease.