1/1
5 files

Fast carbon nanotube growth on carbon fiber keeping tensile strength

dataset
posted on 19.09.2020 by Lays Dias Ribeiro Cardoso, Marinés Chiquinquirá Carvajal Bravo Gomes, Erica Freire Antunes, Fabio Santos Silva, Vladimir Jesus Trava-Airoldi, Evaldo José Corat

This work developed a novel approach for carbon nanotube (CNT) direct deposition on carbon fiber (CF) tow surface by chemical vapor deposition (CVD), without degrading CF mechanical properties. This approach combines conditions for growth at low-temperature (650°C), small growth induction period for a fast growth and fast surface modification to enable the growth. The lower growth temperature comes from using the well-known equimolar C2H2/CO2 gas mixture. The floating catalyst from a liquid precursor (with high ferrocene concentration dissolved in hexane) reduced the growth induction period. Gentle surface modification, either by a mild oxidation of CF fiber with silicon containing sizing, or by desized CF exposition to a hexamethyldissiloxane (HMDSO) environment, create silicon oxide clusters. The X-ray Photoelectron Spectroscopy (XPS) analysis show that such clusters need to be in a higher oxidation state – Si(-O)2, Si(-O)3 and Si(-O)4 – to anchor catalyst and enable CNT growth. The first oxidation state – Si(-O)1 – is not enough. A resin droplet wetting test developed shows that even though the success in CNT growth, the entire processes decrease CF wetting, exposing the need for a resizing procedure. CF mechanical properties were characterized by single-filament and CF tow tensile strength tests.

Funding

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico [402081/2013-7]; Fundação de Amparo à Pesquisa do Estado de São Paulo [2012/15857-1].

History

Licence

Exports