5 files

Correlation transfer by layer 5 cortical neurons under recreated synaptic inputs in vitro

posted on 30.07.2019, 11:41 by Michele Giugliano, Daniele Linaro, Gabriel K. Ocker, Brent Doiron

Correlated electrical activity in neurons is a prominent characteristic of cortical microcircuits. Despite a growing amount of evidence concerning both spike-count and subthreshold membrane potential pairwise correlations, little is known about how different types of cortical neurons convert correlated inputs into correlated outputs. We studied pyramidal neurons and two classes of GABAergic interneurons in layer 5 of the rat neocortex and stimulated them with biophysically realistic correlated inputs, generated using dynamic clamp. We found that the physiological differences between cell types manifested unique features in their capacity to transfer correlated inputs. We used linear response theory and computational modeling to gain clear insights into how cellular properties determine both the gain and timescale of correlation transfer, thus tying single-cell features with network interactions. Our results provide further ground for the functionally distinct roles played by various types of neuronal cells in the cortical microcircuit.


The European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement n. 785907 (Human Brain Project SGA2), the Belgian Science Policy Office (grant n. IUAP-VII/20), the Flemish Research Foundation (grants no. G0F1517N and no. K201619N), the Scuola Internazionale Superiore di Studi Avanzati (“Collaborazione di Eccellenza 2018”), the NIH grants 1U19NS107613-01, and the Vannevar Bush faculty fellowship N00014.


Usage metrics