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Supplement: The formalism of transitions

A point of size s located at {x0, y0} is a linear operator
with point spread function

(1) p(x, y, x0, y0, s) =
e−

(x−x0)2+(y−y0)2

2s2

2πs2 ,

which is normalised to unit overall weight:

(2)

∫ +∞

−∞

∫ +∞

−∞

e−
(x−x0)2+(y−y0)2

2s2

2πs2 dx dy = 1.

Here we let “p” stand for “point operator (see figure S1).

Figure S1. The receptive field profile of the point operator. It is positive

throughout, although the weight falls off steeply with distance to the

center. Here we use a temperature scale, with red for the most positive

value, negative values becoming blue (not present here), values close to

zero whitish.

A point samples the image I(x, y), that is to say

(3)

∫ +∞

−∞

∫ +∞

−∞
p(x, y, x0, y0, s)I(x, y) dx dy = I(x0, y0, s),

thus a point “takes a bite out of the image” so to speak.
The value obtained is the image intensity at that location
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as seen by the acuteness of the point. That is its opera-
tional definition. In order to simplify notation we will often
assume the planar coordinates {x, y} as “understood”, and
write I(s) for I(x, y, s). The scale s has to be indicated
in all cases, except for the original image, which will be
denoted as simply I.

Thus

(4) p(s) ◦ I = I(s),

where I(s) is the image at level of resolution s. Here the
operator “◦” denotes convolution. Thus one might say I(s)
is a “Gaussian blurred copy” of the image. However, from
a conceptual perspective “the” image I, that is the image
at infinite resolution, does not exist. One may only know
images at finite resolution. Because formally I(s1)◦p(s2) =

I(
√
s2
1 + s2

2), this is not a problem.
Notice that

(5) ∆p =
1

s

∂p

∂s
,

which implies

(6) ∆I(s) =
1

s

∂I(s)

∂s
.

This defines the “scale-space” I(s) of the (ideal!) image I,
where I stands formally for I(0). The partial differential
equation is the diffusion equation, of which the point is a
kernel.

The negative directional derivative in the x-direction of
the point is

(7) b(s) = −∂p(s)
∂x

,

or, in expanded notation

(8) b(x, y, x0, y0, s) =
(x− x0) e−

(x−x0)2+(y−y0)2

2s2

2πs4 .
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This is usually called an “edge finder” (see figure S2), which
is merely an unfortunate term for a Gaussian derivative
operator. Here we let “b” stand for “border operator”.

Figure S2. This is a directional derivative of a point, often called ”edge

finder”, in our terminology the “border operator”. Formally it behaves

like a tangent vector of the Euclidean plane at the given scale. It has

positive and negative lobes that exactly balance each other, thus the

operator is blind to uniform patches. This receptive field profile may

double as the “border brush icon” in our model, they look exactly the

same.

The border operator doubles as the “brush operator”. If
we “paint the border operator” with the “brush operator”
we obtain

(9) b(s) ◦ b(s) =
∂2p(s

√
2)

∂x2 = `(s
√

2),

where “`” is known as a formal expression for the Hubel
and Wiesel “line finder” (see figure S3). One might call `
the “local borderness” in the x-direction. The scale has
slightly increased from s to s

√
2.
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Figure S3. This is the second order directional derivative of a point.

It is like the type of simple cell called ”line finder” in neurophysiology.

The second order derivative equals the concatenation of two first order

derivatives, this is the convolution of an edge operator with itself. In

our model it will be ”borderness painted by the border-icon”, that is to

say, a local border.

One may have line finders in any direction. Summing
over all directions removes the directional dependence. By
substituting x → % cosϕ, y → % sinϕ and integrating over
the angle ϕ, one obtains

(10)
1

2π

∫ +π

−π
`(s) dϕ =

1

2
∆p(s),

where we have suppressed the explicit % parameter in ac-
cordance with the short-hand notation. This sum is the
local overall borderness, irrespective direction.

The Laplacean operator is the difference of two point op-
erators of slightly different scales. Thus it is similar to
what the neurophysiologist calls a “DOG (“difference of
Gaussians”) receptive field (see figure S4). This interpre-
tation also indicates that the Laplacean is proportional to
the derivative with respect to scale.

Since the Laplacean of the point operator is proportional
to the derivative with respect to scale,one has

(11)

∫ +∞

0
s∆I(s) ds = 0 outside the origin,
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whereas

(12)

∫ +∞

s0

s∆I(s) ds = − 1

2πs2
0

at the origin,

implying that the integral over the full scale domain is the
Dirac delta function.

Figure S4. This is the difference of a point and another point
√

2–times

as large. It is virtually indistinguishable from the scale derivative of a

point, or the Laplacean operator. The positive center has a negative

surround. Integrated over all space one gets zero, thus such operators

are blind to uniform patches.

Putting things together we have that s times the overall
borderness at scale s equals the scale derivative at scale s.
What holds locally eo ipso hold in the image scale space
because convolution is associative and commutative. Thus
the borderness distribution of an image is proportional to
its derivative with respect to scale.

Inverting this yields the theorem that adding the border-
ness over all scales is the same as integrating the derivative
with respect to scale over scale, that is to say, simply the
image again. This is a major insight:

the image is the sum of the borderness over all
scales.

Thus one may analyse the image into transition areas and
synthesise it again. So where is the gain—since we started
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with an image and ended with it? The gain is that after
the analysis one may selectively handle the components in
the synthesis. Thus one may “filter” based on borderness.

Because the “ideal” image is a non-entity, one may want
to split the integral over scale into three parts. At the
lowest resolutions one is not interested in border regions at
all. One may simply use the images in its most blurred form
as a given basis. It will be almost uniform, so it may also
be ignored altogether. At the highest resolutions one lacks
data. Infinite resolution is not to be had. The solution is
simply to omit the integration over the highest resolutions.
Thus one is left with an integration over a slice of scales
that is indeed availabe. One ends up with a very practical
algorithm.


