3 files

Biodegradation of polychlorinated biphenyls (PCBs) by the novel identified cyanobacterium Anabaena PD-1

Download all (112 kB)
posted on 2015-07-15, 02:46 authored by Hangjun Zhang, Xiaojun Jiang, Liping Lu, Wenfeng Xiao

Polychlorinated biphenyls (PCBs), a class of hazardous pollutants, are difficult to dissipate in the natural environment. In this study, a cyanobacterial strain Anabaena PD-1 showed good resistance against PCB congeners. Compared to a control group, chlorophyll a content decreased 3.7% and 11.7% when Anabaena PD-1 was exposed to 2 and 5 mg/L PCBs for 7 d. This cyanobacterial strain was capable of decomposing PCB congeners which was conclusively proved by determination of chloride ion concentrations in chlorine-free medium. After 7 d, the chloride ion concentrations in PCB-treated groups (1, 2, 5 mg/L) were 3.55, 3.05, and 2.25 mg/L, respectively. The genetic information of strain PD-1 was obtained through 16S rRNA sequencing analysis. The GenBank accession number of 16S rRNA of Anabaena PD-1 was KF201693.1. Phylogenetic tree analysis clearly indicated that Anabaena PD-1 belonged to the genus Anabaena. The degradation half-life of Aroclor 1254 by Anabaena PD-1 was 11.36 d; the total degradation rate for Aroclor 1254 was 84.4% after 25 d. Less chlorinated PCB congeners were more likely to be degraded by Anabaena PD-1 in comparison with highly chlorinated congeners. Meta- and para-chlorines in trichlorodiphenyls and tetrachlorobiphenyls were more susceptible to dechlorination than ortho-chlorines during the PCB-degradation process by Anabaena PD-1. Furthermore, Anabaena PD-1 can decompose dioxin-like PCBs. The percent biodegradation of 12 dioxin-like PCBs by strain PD-1 ranged from 37.4% to 68.4% after 25 days. Results above demonstrate that Anabaena PD-1 is a PCB-degrader with great potential for the in situ bioremediation of PCB-contaminated paddy soils.