figshare
Browse
1/1
4 files

Adaptive Inference for Change Points in High-Dimensional Data

dataset
posted on 2021-02-08, 18:30 authored by Yangfan Zhang, Runmin Wang, Xiaofeng Shao

In this article, we propose a class of test statistics for a change point in the mean of high-dimensional independent data. Our test integrates the U-statistic based approach in a recent work by Wang et al. and the Lq-norm based high-dimensional test in a recent work by He et al., and inherits several appealing features such as being tuning parameter free and asymptotic independence for test statistics corresponding to even q’s. A simple combination of test statistics corresponding to several different q’s leads to a test with adaptive power property, that is, it can be powerful against both sparse and dense alternatives. On the estimation front, we obtain the convergence rate of the maximizer of our test statistic standardized by sample size when there is one change-point in mean and q = 2, and propose to combine our tests with a wild binary segmentation algorithm to estimate the change-point number and locations when there are multiple change-points. Numerical comparisons using both simulated and real data demonstrate the advantage of our adaptive test and its corresponding estimation method.

Funding

Shao’s research is partially supported by NSF-DMS 1807023 and NSF-DMS-2014018.

History

Usage metrics

    Journal of the American Statistical Association

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC