figshare
Browse

A Fair and Safe Usage Drug Recommendation System in Medical Emergencies by a Stacked ANN

Download (149.54 kB)
Version 2 2025-01-22, 12:53
Version 1 2025-01-22, 12:51
dataset
posted on 2025-01-22, 12:53 authored by Usha Rani BhimavarapuUsha Rani Bhimavarapu, gopi battinenigopi battineni, Nalini ChintalapudiNalini Chintalapudi

The importance of online recommender systems for drugs, medical professionals, and hospitals is growing. Today, the majority of people use online consultations for drug recommendations for all types of health issues. Emergencies such as pandemics, floods, or cyclones can be helped by the medical recommender system. In the era of machine learning (ML), recommender systems produce more accurate, quick, and reliable clinical predictions with minimal costs. As a result, these systems maintain better performance, integrity, and privacy of patient data in the decision-making process and provide precise information at any time. Therefore, we present drug recommender systems with a stacked artificial neural network (ANN) model to improve the fairness and safety of treatment for infectious diseases. To reduce side effects, drugs are recommended based on a patient’s previous health profile, lifestyle, and habits. The proposed system produced results with 97.5% accuracy. A system such as this could be useful in recommending safe medicines to patients, especially during health emergencies.

History

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC