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Abstract—In this paper we propose SmartARM – a
Smartphone-based group Activity Recognition and Monitor-
ing (ARM) scheme, which is capable of recognizing and
centrally monitoring coordinated group and individual group
member activities of soldiers in the context of military
excercises. In this implementation, we speci�cally consider
military operations, where the group members perform simi-
lar motions or manoeuvres on a mission. Additionally, remote
administrators at the command center receive data from the
smartphones on a central server, enabling them to visualize
and monitor the overall status of soldiers in situations such
as battle�elds, urban operations and during soldier’s physical
training. This work establishes – (a) the optimum position of
smartphone placement on a soldier, (b) the optimum classi�er
to use from a given set of options, and (c) the minimum
sensors or sensor combinations to use for reliable detection
of physical activities, while reducing the data-load on the
network. The activity recognition modules using the selected
classi�ers are trained on available data-sets using a test-
train-validation split approach. The trained models are used
for recognizing activities from live smartphone data. The
proposed activity detection method puts forth an accuracy
of 80% for real-time data.

Index Terms—Smartphone, Activity Recognition, Sensors,
Classi�er, Group Activity Learning

I. I�����������
The use of smartphones in military applications although

limited, but is seeing a gradual rise in acceptance due to
its high computation capability and compactness of size [1].
As the communication channels are encrypted and commu-
nication stations in battle�eld are manned by manual and
automatic defense mechanisms, the communicating infras-
tructure is considered to be un-corruptable in our selected
scenario. Our proposed SmartARM system as shown in Fig.
1, is an endeavor to develop a real-time smartphone-based
soldier localization [2] and monitoring system enabling the
military planners and commanders to acquire situational
awareness of a battle�eld from the activity status of the
participating soldiers, instead of relying only on verbal re-
ports. The activity of a soldier or his/her group remotely

provides health-stress conditions by� tting it on a pre-trained
activity recognition model indicating normal or abnormal
activity of a soldier with respect to his group. In case, all the
soldiers in a region are engaged in similar activity, the group-
based activity recognition system infers the group’s activity
– running, jumping, crouching, lying, and others. On the
contrary, if some of the soldiers show signi�cant deviation
from the group’s detected activity, the activity detection
system� ags it as an abnormality, upon which the commander
is alerted. This system is similar to Ambient Assisted Living
(AAL) architectures, such as the ones proposed by Lloret et
al. [3] and Ullah et al. [4]. However, our approach depends on
manually carried activity sensing platforms – smartphones –
instead of inferring emergency situations from communica-
tion channel message exchanges. Additional challenges of a
soldier monitoring system include sensor placement on the
soldier to achieve maximum accuracy of activity detection
without hindering the soldier’s movements, unlike standard
approaches such as the one demonstrated by Lemmens et al.
[5].

Fig. 1. The SmartARM architecture showing the network set-up and data-
�ow to a remote server over the Internet.

The following smartphone sensors are used for SmartARM
– Accelerometer (↵), Magnetometer (µ) and Gyroscope (�)
[5]. The raw accelerometer values ↵

d

(x, y, z), along x, y and



z axes of the smartphone, for a sensed force (F (x, y, z)) acting
on a mass (m) is (±g) �

P
F (x,y,z)
m

, where, g ' 9.8m/s2 is
the acceleration due to gravity. ↵

d

(x, y, z) is translated to
linear acceleration by passing it through a high pass�lter
(HPF) (H!) to generate the linear acceleration, as shown in
Equation 1.
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The ±2g term is present as a result of sensitivity adjust-
ments of Inertial Measurement Unit (IMU) sensor of the
smartphone, which provides sensitivities in the range of
±2xg |

x=1,2,3,4. This value is determined by the respective
sensor’s datasheet. Similarly, the raw magnetometer and
gyroscope values of the smartphone are represented by
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↵, µ and � are transmitted over the network to the remote
server. According to Algorithm 1, the incoming data to the
server, D is of the form [↵
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This algorithm generates output in the form of probability
scores of classes P(C

k

) for each individual user equipped
with the SmartARM smartphone. Multiple (n) individual
activity reports (P

n
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)) are combined to generate an
ensemble (G

e

) for a certain GPS-grid (GPS
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), such that
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. The primary
assumptions for implementing this system are enumerated in
Assumptions 1 and 2.
Assumption 1: The smartphones and the server are con-

nected by a network. The smartphone uploads data to the
server at a user-con�gurable rate (here, t = 200 samples
per second). For faster operation and energy savings, the
sampling rate can be lowered. However, it is not advisable
to lower it below t = 50 samples per second, as it tends to
miss relevant information from the recorded data.
Assumption 2: The group objective or mission is known to

the individual group members as well as the central mission-
control. The group and individual status are inferred based
on the pre-de�ned mission.

A. Motivation

Soldiers in a battle�eld depend on highly coordinated
movements and actions of their teams. Sudden and jerky
movements during evasive or attacking actions in battle�elds
are common but, may force wrong detection of activities by
an activity detection system such as the one described by
Anjum et al. [6]. Additionally, a soldier monitoring system
demands energy e�cieny to endure long missions, as well
as, compactness of form, so as not to hinder the soldier’s
natural movements.

B. Contributions

In this work, a smartphone-based activity recognition
scheme is evaluated against various placement positions of
the smartphone on the human body. This work addition-
ally proposes a scheme for smartphone-based monitoring of
group activities, generally associated with military units. In
lieu of these tasks, the following contributions have been
made in this work:
1) Placement of data acquisition platform on the soldier in

such a manner that it does not hinder his/her natural
movements.

2) Selection of the sensor or least number of sensor
combinations instead of using all available sensors
to minimize data transmission load on a constrained
transmission network.

3) A group-based validation of activities detected for sol-
diers in battle�elds to reduce chances of mis-interpreted
activities where a subject is exposed to sudden and
abrupt motion, making individual-based activity detec-
tion approaches highly errorenous.

II. R������ W����

Positional sensor embedded smartphones are being in-
creasingly used for human activity recognition and moni-
toring due to their intrusive presence in the society, and
considerable computing power. Wang et al. [7] used the
smartphone built-in accelerometer and gyroscope sensors to
recognize simultaneous, as well as separate human physical
activities. Their feature selection method, and online activity
recognizer scheme reports better activity generalization abil-
ity and improved power savings in the smartphone. Similarly,
Chen et al. [8] proposed a performance analysis method for
motion-sensor behavior in smartphone-based human activity
sequences. Their work utilized data segmentation using their
cycle detection algorithm, and data characterization using
time, frequency and wavelet domain operations, which re-
sulted in an F-score of 96.26%. Segundo et al. [9] proposed
a human activity classi�cation scheme which employs Hid-
den Markov Models (HMMs) applied on publicly available
smartphone-based human activity datasets. Their approach
reported an activity recognition error rate of 2.5%. Taufeeq
Uddin et al. [10] proposed importance score driven random
forests to recognize activities and postural transitions on
smartphones to reduce fall in recognition accuracies due to
these transitions. Their methods achieved 100% detection
accuracies during human activity recognition on benchmark
datasets.
One of the predominantly used applications of human

activity recognition is in the healthcare sector. Actitracker,
a smartphone-based activity recognition method developed
by Weiss et al. [11] doubles as a health assistrant. Their
system allowed people to set personal activity goals and
monitor their progress toward these goals. Another one of the
diverse usages of human activity recognition can be found
in the work by Lee and Song [12]. They proposed a machine



learning system operational on a smartwatch and a smart-
phone to recognize stereotyped movements in children with
developmental disabilities. Their system achieved an average
recognition accuracy of 91% on individual training datasets.
Similarly, Grunerbl et al. [13] proposed a smartphone-based
system which can recognize depressive and manic states
and detect state changes of patients su�ering from bipolar
disorder. They reported accuracies of 76% by fusing sensor
modalities and state change detection precision and recall of
over 97%. Smartphone-based human activity sensing can be
found even in domains such as elderly care, as proposed by
Cardoso et al. [14].
Synthesis: The various works in the domain of

smartphone-based human activity recognition for various
applications are mainly targeted for individual users in a
predominantly civillian populace. As very selective domains
can incorporate group activities for garnering collective in-
formation, works on group activity recognition and valida-
tion systems are considerably lacking. Additionally, none of
these works address the problem of missing or corrupted
smartphone data, during transmission.

Algorithm 1 The Activity Detection Algorithm
1: Inputs:
2: D = [d1, d2, .., d9], <

m⇥9 = [↵
m⇥3, µm⇥3, �m⇥3]

. % D is the incoming data from
the smartphone, <

m⇥9 is the training dataset consisting
of m samples and 9 features%

3: Output: P(C
k

) . % probability of a class %
4: Initialize Parameters:
5: C1  walk, C2  jog, C3  run, C4  jump, C5  jump

rope, C6  cycling
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8: Initialize:
9: @  f
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�

10: . % @ is the mathematical model used for the
prediction of the classes. %

11: while (m == True) do
12: for (i = 0; i  6; i + +) do
13: C

i

 Predict (D
m⇥9,@)

14: end for
15: C

o

 [P(C1), P(C2), P(C3), P(C4), P(C5), P(C6)]
16: Return P(C

k

) 2 Max(C
o

)
17: end while

III. S�����D����������
The SmartARM architecture consists of 2 main parts – (a)

individual smartphone-side data generation, and (b) server-
side analysis. The sensor data D from each member K

i

of the group M is sent continuously to the server using
the Internet or locally available WLAN infrastructure. The
server has provision for parallel storage and analysis of the
incoming data-logs. The generated probability of activity
P(C

K

), obtained by� tting the incoming data to pre-trained

model, from Algorithm 1 is applied on Algorithm 2 to infer
group status as well as individual status with respect to the
group. Functions Temporal Ensemble, Group Ensemble and
Individual Status supplement Algorithm 2.

Algorithm 2 Group Ensemble Status Monitoring Algorithm
1: Inputs:
2: OM , Activity classes {C1,C2,C3,C4,C5,C6}, Ct , GPS

x

3: . % OM is the output of the individual user’s activity
from Algorithm 1 %

4: . % M is the number of members in the group, C
t

is the activity of an individual group member at time t,
GPS

x

is a GPS reference grid, under which all users are
considered as a team %

5: Output:
6: Status(Group), Status(Individual)
7: Initialize:
8:
9: while (C

t

== True) do
10: C

e

= mode[C
t

,C
t�1,Ct�2, · · · ,Ct�2000]

11: end while
12: Group Ensemble ! SG
13: Individual Status ! SI
14: Return [Status(Group) SG, Status(Individual) SI]

A. Data
A sanitized training data-set is used for generating the

activity recognition model, as outlined in Algorithm 1. The
data-set used is REALDISP Activity Recognition Dataset [15],
available at the UCI Machine Learning Repository [16]. This
data-set consists of 33 activities, recorded using 9 sensors,
placed on 17 subjects in 3 di�erent scenarios. Out of these
33 activities, we choose 6 – walk, jog, run, jump, jump-
rope and cycle – for all 17 subjects in a single scenario.
Additionally, Live-data is recorded on the same six activi-
ties for approximately 18 minutes, wherein 4 minutes each
are assigned for continuous walking, jogging and running,
followed by a minute each of jumping and jump-rope and
�nally, 4 minutes of cycling. The live-data is meant only for
checking the e�ectiveness of the proposed method on actual
scenarios, and hence, the time taken for each activity is non-
in�uential. This data is uploaded to the remote server and
�t onto pre-trained activity recognition modules, as outlined
in Algorithm 1. The data is uploaded for a group-size of
6 people, which is the most widely used size of a military
special operations teams world-wide. However, this approach
can be scaled-up to include larger groups/teams working in
tandem.

B. Experimental Setup
We use two di�erent Android-enabled smartphones in this

work – Samsung Galaxy S Duos and Xiaomi Mi 4i. Five
positions on users are identi�ed for placing the smartphone,
so that the placed smartphone does not in any way a�ect
the physical activities of the individual user. The positions



1: function G����E�������
2: while ((S

t

== True) && (S
t

2 GPS
x

)) do
3: for (i = 1; i M; i + +) do
4: G

e

(i) = S
i

5: end for
6: G

e

= [S1,S2, · · · ,SM]
7: A  mode(G

e

) . %A 2 {C1,C2,C3,C4,C5,C6}%
8: end while
9: Return A
10: end function

selected are – Right Upper Arm (RUA), Left Upper Arm
(LUA), Back, Left Thigh (LT), and Right Thigh (RT), as shown
in Fig. 2. Based on established works of relatively similar
essence [6],� ve classi�ers are chosen for classifying the
incoming smartphone signals – Decision Trees (A), Naïve
Bayes (Gaussian) classi�er (B), K-Nearest Neighbor(KNN)
(C), Support Vector Machines (SVM) (D) and Random Forest
(E) – which are trained on the REALDISP dataset [16].

1: function I���������S �����
2: for (i = 1; i  A; i + +) do
3: if (S

i

, A) then
4: Check upon S

i

5: end if
6: end for
7: Return Status(S

i

)
8: end function

These classi�ers are behaviourally contrasting, which pro-
vides for a relativistic understanding of each method in
classifying the data in a challenging scenario such as the one
chosen by us. Decision Trees operate on the basis of certain
user-de�ned decision-rules which convert a problem into a
tree-like structure to decide the probability of a data-point be-
longing to a class. Similar to Decision Trees, Random Forests
use an ensemble of all the outputs generated from multiple
Decision Trees to arrive at the� nal probability of the
data-point belonging to each class. A Naïve Bayes classi�er
calculates the normalized mean and standard deviation of the
data to assign the probability of belongingness of the data-
point for each class. A KNN classi�er is non-parametric and
arrives at the data-point’s� nal class belonging probability
by taking the majority vote on the frequency of occurrence
the data-point’s K-nearest neighbours. Finally, an SVM is a
non-probabilistic, binary, linear-classi�er which uses a Radial
Basis Function kernel (in our case) with “one-versus-all”
mapping to convert the input data into linearly separable
classes. The server-side algorithms for utilizing the data,
classi�ers and data-sets for inferring activities are outlined
in Algorithms 1 and 2. Various challenges are addressed with
respect to the activities of an individual user such as – the
optimal sensor placement position on the subject without
hindering his physical movements, sensor or speci�c sensor
combinations for generating maximum activity-classi�cation

accuracy from minimum sensor data and counteracting the
e�ects of missing or noise-corrupted sensor data at the server.

Fig. 2. The relative position of the smartphone on the human body.

IV. R������
This section discusses the results obtained for the setup

discussed in Section III-B, and helps narrow-down the sensor
placement position, sensor or their combinations and the
suitable classi�er for classifying various activities. Figs. 3 and
4 summarize the respective results of� nding the optimal
position for sensor placement and e�ect of various sensors
and their combination on the accuracy of activity identi�ca-
tion using various classi�ers. Additionally, each� gure shows
the performance of these di�erent classi�ers in accurately
classifying each activity from the REALDISP dataset [16]. A
train-test-validation approach has been followed in analyzing
the performance of the classi�ers in the activity detection
tasks. The data-set is split into train-test-validation sets in
the ratio of 50 : 30 : 20. In addition to following a train-test-
validation split based approach, the trained classi�er models
are also used for activity detection on live-data, which is
manually validated for detected activities. Fig. 5 shows the
performance of the chosen classi�ers in correctly recognizing
the Live data activity on the REALDISP dataset-based models,
which are pre-trained in the server according to Algorithms
1 and 2. There exists corruption of data during sensor-noise
or improper decoding of data at the server-end, resulting in
errorenously formatted data which is counteracted by the
use of an imputing function to weed out these erroroneous
instances.

A. Sensor Placement Position
The comparative performance of various smartphone

placement positions with respect to a soldier in action is



TABLE I
P�������� �������� ����� ����� �������� ������� ��� RF����������

����� ��� ����� �������. T�� ������ ��� ������� 0 ���1.

Pos Precision Recall f1-score Accuracy
RUA 0.97 0.97 0.97 0.9651
LUA 0.97 0.97 0.97 0.9712
BACK 0.96 0.96 0.96 0.9604
LT 0.96 0.96 0.96 0.9559
RT 0.96 0.96 0.96 0.9590

discussed in this section. The comparison between the se-
lected classi�ers and sensor placement positions is shown in
Fig. 3, which is generated by using all three sensors (A+G+M).
The LUA position of the smartphone repeatedly provides best
classi�cation accuracy for all the chosen classi�ers, except for
the Naïve Bayes classi�er, where the Back position provides
the highest accuracy of classi�cation. The highest accuracy of
classi�cation achieved using LUA as the smartphone position
is for the Random Forest (RF) classi�er at 97.12%. For
a speedier classi�cation, the K-Nearest Neighbour (KNN)
classi�er can be chosen, which generates an accuracy of
96.07% and is the fastest among the chosen classi�ers. The
classi�cation metrics are shown in Tables I and II, which
signify the absence of opportunistic performance, such as
over-�tting of data. Table I shows the performance of the
best classi�er – Random Forest – in detecting activities for
various sensor placement positions on the soldier. Similarly,
Table II shows the performance metrics for the best adjudged
sensor placement position – LUA (as shown in Fig. 3) taking
the readings from all three sensors together.

TABLE II
M���� �������� ������� ��� ��� ������ ����������� ����� LUA �� ���
������ ��������� �������� ���� ��� ��� �� ��� ����� �������. T��

������ ��� ������� 0 ���1.

Classi�er Precision Recall f1-score Accu.
Random Forest 0.97 0.97 0.97 0.9712
KNN 0.96 0.96 0.96 0.9607
SVM 0.07 0.27 0.11 0.2694
Naive Bayes 0.77 0.76 0.76 0.7647
Decision Trees 0.93 0.93 0.93 0.9324

B. Sensor(s) Selection
Having evaluated the best classi�er amongst the chosen

ones and the optimum sensor placement position on the
soldier using all three sensors (A+G+M) together, we now aim
to reduce the data-load on the remote server by evaluating
the performance of individual sensors or sensor combina-
tions in activity detection to generate results comparable to
the use A+G+M. Fig. 4 shows the performance of various
classi�ers in classifying the activities for standalone smart-
phone sensors, as well as their combination – Accelerome-
ter and Magnetometer (AM), Accelerometer and Gyroscope
(AG), Magnetometer and Gyroscope (MG). The RF classi�er

Fig. 3. Performance of classi�ers in detecting activities with respect to
varying smartphone positions on the human body.

consistently yields the best classi�cation accuracy for all
the three individual sensors – accelerometer, magnetometer,
gyroscope – at 75.41%, 87.87%, and 60.68%, respectively.
In the combination mode, the RF classi�er again provides
consistent performance and highest classi�cation accuracy
at 89.91% for AG, 95% for AM and 94.7% for MG. As the
incoming data for a combination of sensors results in larger
data load on the server, the KNN can be considered for a
faster performance as compared to the other classi�ers, as is
evident in Fig. 4.

C. Counteracting Missing Sensor Values

Fig. 5 summarizes the performance of the chosen classi�ers
in classifying data with sudden missing or noise-corrupted
sensor values in live incoming data. A mode-based imputing
function (I(d

i

)) is used to� ll in the missing or corrupted
sensor values prior to� tting on the pre-trained model in the
server for the sake of maintaining continuity of data. I(d

i

)
is calculated as, I(d

i

) = mode{{[d
i

(t)}](i�11)
t=(i�1) }. Both the

RF classi�er and KNN demonstrate an activity classi�cation
accuracy of over 85% in conjunction with I(d

i

). The RF
classi�er performs marginally better than KNN with an
accuracy of 87% however, the RF classi�er additionally acts
as a feature extractor therefore, eliminating the need for
separate feature extraction techniques such as Dynamic Time
Warping (DTW).

V. C���������

The SmartARM system provides a comprehensive on-�eld
soldier status monitoring system based on his/her physical
activities. This system avoids the use of individual sensor
nodes, as they require separate processors, communication
radios, and power systems, which eventually proves cumber-
some for the soldier and may a�ect his/her free movement.
The use of commonly available smartphone-based platforms



Fig. 4. Performance of classi�ers in detecting activities with respect to
various smartphone sensor combinations.

Fig. 5. Performance of classi�ers in detecting activities with respect to the
selected smartphone position on the human body and the chosen sensor
combination.

for sensing, activity recognition, localization and commu-
nication tasks associated with a soldier not only makes
this system more compact, but also cost-e�cient and easily
implementable without the need for extra modi�cations to
a soldier’s gear. The remotely-situated commander at the
command center gets a comprehensive update of the group’s
activities as well as individual soldier’s status with respect to
the group. This system can be easily integrated with various
�elds such as health-care monitoring for elderly persons and
with smart-homes for generating user context in a smart-
home environment.
In the future, we plan on generalizing this model and

train this system for identifying more activities as well as,
improving the classi�cation accuracy for the present activity
sets. Additionally, we plan on integrating various bio-sensors
to this platform, so as to make it a complete activity and
health monitor.
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