
PEESOS: A Web Tool for Planning and Execution of Experiments in Service
Oriented Systems

Luiz H. Nunes ∗, Luis H. V. Nakamura ∗, Bruno T. Kuehne ∗,
Edvard M. de Oliveira ∗, Rafael M. de O. Libardi ∗, Lucas J. Adami ∗,

Julio C. Estrella ∗, Stephan Reiff-Marganiec †
∗ University of São Paulo (USP)

Institute of Mathematics and Computer Science (ICMC), São Carlos-SP, Brazil
Email: {lhnunes, nakamura, btkuehne, edvard, mira, ljadami, jcezar}@icmc.usp.br

† University of Leicester
University Road, Leicester, LE1 7RH - UK

Email: srm13@le.ac.uk

Abstract—Performing functionality testing in service-
oriented architectures is not a trivial task. The difficulty
is especially the large number of components that may be
present in a SOA such as brokers, providers, service registries,
clients, monitoring tools, data storage tools, etc. Thus, in
order to facilitate the process of conducting functional testing
and capacity planning in service-oriented systems, we present
PEESOS. This first version is a functional prototype that
offers facilities to assist researchers and industry to test their
new applications, allowing collaborations that can be done
between the participants to achieve an appropriate objective
when developing a new application. The first results show
that it is possible to make a planning environment easier
to operate and to readily obtain results for performance
evaluation of a target architecture. Since this is a first version
of the prototype, it has interface and scalability limitations
as well as needing improvements in performance of the logs
repository and also in a core engine. We hope that such
limitations can be corrected in the near future, including
gathering information from the scientific community to make
the prototype a useful and accessible tool. PEESOS is on-line
and available at http://peesos.wsarch.lasdpc.icmc.usp.br.

Keywords-Web Services, Service Oriented Architecture,
Quality of Service, Performance Evaluation, Capacity Plan-
ning, Functional Tests

I. INTRODUCTION

SOA is an architecture which provides applications as
services. It improves the systems interoperability and pro-
vides interfaces for legacy systems. However, enterprises
adopting SOA should make efforts to perform as many tests
as possible to ensure minimum levels of performance. [1].

SOA tests can be classified into four categories: re-
gression, integration, non-functional and functional testing.
Functional tests aims to validate the functional properties
of a service. Regression tests reuses previous test cases,
when modifications occurs in an existing system to ensure
that all features are still working. Integration tests aims
to make several components of a system work together
as expected. Non-functional tests aim to ensure that non-

functional properties reach appropriate values during the
execution [3].

Functional tests can be divided into other categories:
unit, composition and end-to-end. Unit tests validate that
a service meets its functional requirements. Composition
test aim to validate workflows or individual services which
are part of a composite service. End-to-end tests test all
business flows that constitute a individual or composite
service. Basically to perform end-to-end testing of a SOA
we need: 1) Identification of business critical test scenarios,
2) Identification of Dynamic Composition Sequences, 3)
Establishment of realistic test environments and data and
4) Report on and Analyse Test Results [9].

Capacity planning is a common strategy used to measure
the capacity of traditional software systems. It is difficult,
expensive and hard to adequately plan the capacity for SOA
end-to-end applications. The major problems of capacity
planning can be summarized as lack of tools and skills,
integration of SOA components, tests across organizational
boundaries and security requirements [2].

In this paper, we propose a tool called Planning and
Execution for Experiments in Service Oriented Systems
(PEESOS). PEESOS aims to perform capacity planning tests
for end-to-end SOA applications in real and simulated SOA
systems. PEESOS differs from others approaches in at least
two points: it guides the user through a model based on a
set of commons SOA entries and it allows to establish a
full factorial design experiment. PEESOS also provides a
collaborative workload generator based on a Client-Server
model to establish a realistic load test environment for
capacity planning test. Compared to the tools presented in
the related work, the key point of PEESOS is that it is
available online to be evaluated.

The paper is organized as follows: Section II presents
a literature review of existing approaches in SOA testing
tools. Section III describes the proposed tools structure and
how it works. Section IV describes the methodology and



configurations used for the experiments. The results are
then discussed in Section V. Finally, the conclusions and
directions for future work are presented in Section VI.

II. RELATED WORK

Experiments in SOA pose three main problems: lack of
an intuitive execution environment; integration of available
resources; and performance monitoring during tests [12].

Some tools can create virtual environments to execute
automated tests in SOA based on WSDL files 123. They can
perform functional, regression, compliance and load tests.
However they are commercial, closed-source and usually
prohibitively expensive for small groups.

In [13] the TESSI (TESting of Service Implementations)
tool is presented as part of the TASSA framework to achieve
web service environment testing. TESSI can generate SOAP
request templates based on HTTP, SOAP and BPEL variable
levels and define unitary tests. It can also support data
driven testing, test management and test execution. However,
the tester needs to specify value ranges for each variable
[9]. Other work like WSDLTest [16], monadWS [18] and
BPELUnit [11] can also automate tests based on web
services description files.

Brebner [2] presents the SOPM (Service-Oriented Per-
formance Modeling) framework which is a visual tool to
simulate a service-oriented system based on services and
their composition. Although the error was up to 15 percent in
a functional test, this tool helps to understand the scalability
and performance before service deployment.

Gu and Ge [6] shows a method to auto-generate per-
formance test cases based on two consecutive steps. The
first step is the work-flow analysis, where QoS factors are
identified. The second step is a genetic algorithm that creates
the test cases.

Smit and Stroulia [15] presents the SASF (Services-Aware
Simulation Framework) to create executable simulations
based on existing data about services. The SASF focus on
capacity planning and enable users to interact with a running
simulation through an user interface and an API. It also
includes a flexible metrics-gathering component that can be
extended to collect and visualize new metrics.

Xing and Yao[17] proposes a system that performs col-
laborative experiments in SOA. Internet users are able to
communicate and collaborate with service requests for large-
scale experiments through that tool.

Smit and Stroulia [15] also presents a simulation
frameworks survey for SOA and concluded that service-
composition testing before real deployment is the most
common task supported by the analyzed frameworks. The
Table I shows a survey summary of the frameworks ana-
lyzed. WSDL is used to model most of the tools, except

1SoapUI - http://www.soapui.org/
2GH Tester - http://www.greenhat.com/ghtester/
3CloudPort - http://www.crosschecknet.com/products/cloudport.php

SOPM and our tool. Also, all non-commercial frameworks
(excluding Testing Tools) use some kind of proof-of-concept
evaluation method. Our tool (PEESOS) differs from the
others frameworks because it enables evaluation in real
environments.

Based on [17] this work proposes a tool for capacity
planning tests in SOA within a real environment. These tests
differ from [13] SOAP request templates by using a model
based on a set of commons SOA entries to guide the user
when configuring the tests. Also, this research complements
[2] and [15] by adding a real workload environment to obtain
more accurate metrics.

III. PEESOS
A. Overview

The PEESOS tool is a prototype which supports the
modeling of design of experiments (DOE) in SOA. PEESOS
also enables the execution of the modelled experiment in
the target environment. The main purpose of PEESOS is
to capture the results from the executions to predict the
performance of the target system, under different resource
configurations and workloads. It is also capable to predict
non-functional metric such as QoS for clients in different en-
vironments. The main advantage from a prototype approach
instead of simulation and analytic model is the possibility
to have more accuracy of the results that help to detect
bottlenecks which is not possible in simulation or by using
analytical models.

H1

Services

H2

Services

Hn

Services
Hosts

Broker

PEESOS

LAN
Clients

Colaborative
Clients

1

2

Avaliable
Clients

3

4

6

7

1. Experiment Planning
2. Provider Service Deploy
3. Client Deploy
4 Client Request
5. Service Location
6. Provider Request/Response
7. Client Response
8. Provider Service Undeploy

8 5

...

Figure 1: Workflow of tool

The DOE of this tools is based on a set of commons
SOA entries, where test cases are generated through a model
which describes the expected behaviour of an experiment.
Each one of this entries affects the response variable and
are called factors. The values which a factor can assume are



Table I: Objectives, Modeling and Evaluation Properties. Adapted from [15]

Objective Modeling Evaluation

SOPM Verify perfomance and scalability Visual, Jmeter Proof-of-concept
pre-deployment for performance (functional test)

Testing Tools Composition and load testing WSDL -automatically from WSDLs

SASF
Create a virtual model of a WSDL + perf. Modeled two applications;
componentized software application Profiles statistically validated metrics
Focused on capacity planning

TESSI provide test case generation, WSDL, Simple proof-of-conceptexecution and management BPEL

PEESOS
Provide end-to-end test case generation model with a Proof-of-concept in virtual/real
and execution focused on capacity set of SOA environment

commoms entries

called levels. Test cases generated by this model uses a full
factorial design with every possible combination at all levels
of all factors [8] being covered.

The aim of this work is to reduce the complexity in
performing capacity testing in SOA by abstracting the steps
of service deployment and to generate load for these ex-
periments. The PEESOS tool performs all steps to deploy
a service in a real or simulated environment. After the
deployment of a service, a synthetic workload is generated
in a collaborative form which allows to obtain more accurate
QoS parameters.

Figure 1 shows the sequence of steps when using the
PEESOS tool:

1) the stakeholder prepares the experiment parameters:
number of hosts, number of clients, service, client
application, workload, etc.

2) services are deployed in the selected hosts .
3) the client application is deployed to selected clients.
4) the clients perform requests to the broker.
5) the broker chooses a host to attend the client request.
6) the broker forwards the client request to the selected

provider.
7) the broker forwards the host response to the client.
8) the services are undeployed from the hosts.

PEESOS
CORE

MONITOR TRANSPORT WORKLOAD

Figure 2: Modules of PEESOS tool

Figure 2 shows the overall structure of the tool. The tool
is composed of four modules, described in more detail in
the next sections. Briefly:

Monitor: monitors the status of providers and clients avail-
able for experiments;

Transport: manages the file transfer and command execu-
tion of clients and service providers;

Workload: manage the distribution of workload among the
clients requests;

PEESOS Core: manages the communication between the
other three modules and contains the main structures
of the tool.

B. Monitor

The Monitor Module has a set of methods to monitor
the availability and condition of services providers and
client devices. The available information is monitored in the
service providers by the Ganglia Monitoring System4. All
information collected from the Ganglia Monitor is stored
in a relational database. The location and availability of
the providers are retrieved from client devices exclusively
through a client application that uses a socket based client-
server model.

C. Transport

The Transport Module has a set of methods whose pur-
pose is the transfer of data to clients and service providers.
Service providers can receive data trough the SSH protocol
or sockets. Data transferred to service providers contains
the service that will be deployed. Like the Monitor Mod-
ule, client devices can only received data through a client
application. Data transfer through this can contain the client
application that will send requests to providers or a com-
mand to execute a client application.

D. Workload

The Workload Module has a set of methods whose purpose
is to generate a synthetic workload model that will be used
to control clients requests. These models use probability
distributions to generate workload data.

4http://ganglia.sourceforge.net/



E. PEESOS Core

The PEESOS Core is the main module, it has a set of
methods to orchestrate the experiment planning and execu-
tion. The PEESOS Core is also responsible for performing
the communication and synchronization between the other
modules. It communicates with the Monitor Module to deter-
mine which provider and clients are available for experiment
planning. It knows which providers and clients are selected
by the stakeholder for communication with the Transport
Module and transfers all needed data. The Workload Module
is accessed when the interval between each request has to
be determined and performs requests trough the Transport
Module. The set of common SOA entries has an exclusive
class in this module with basic attributes to perform an
experiment. If a specific experiment is not defined with by
common entries, this class can be extended and adapted to
accomplish it.

IV. PERFORMANCE EVALUATION

In this section, we present a performance evaluation of
PEESOS in a functional case study which is related to
SOA components and web services. The motivating example
for our evaluation is a SOA prototype named WSARCH5

running a synthetic web service.
The main aim of the WSARCH architecture is to provide

a basic infrastructure to detail and solve problems related to
workload, service composition, fault tolerance, network and
security of messages and components [5].

The synthetic web service is a CPU bound service, de-
veloped to calculate the factorial of a number in an iterative
way based on formula, n! =

∏n
k=1 k, ∀k ∈ R. This service

was chosen because it can easily stress the SOA target by
generating large messages.

A. Experiment Environment

Node 1

Node 15
WSARCH

External 
Network

Broker

WSARCH 
Network

.

.

.

PEESOS 
Network

PEESOS

Figure 3: Test Environment

5http://wsarch.lasdpc.icmc.usp.br/

The test environment for experiments is prepared with
a set of machines disposed in an external network to
perform requests. The WSARCH Broker is available to
deploy applications and handle requests. Figure 3 shows the
test environment arrangement. PEESOS manages external
machines to make requests to the WSARCH broker, which
is responsible for scheduling those requests among providers
and then responds to them. PEESOS also uses the WSARCH
architecture to deploy services in providers and optionally
register them in a UDDI repository.

The test environment is composed of one virtual machine
to execute PEESOS hosted in a physical machine and fifteen
hosts as available clients. Table II describes these machine
configurations. The WSARCH architecture is composed of
one broker, one LogServer, twelve virtual providers (four
virtual machines per host) and twelve virtual UDDIs (four
virtual machines per host). All information regarding access
to Providers, UDDIs, Broker and LogServer can be found
at http://wsarch.lasdpc.icmc.usp.br/infrastructure.

Table II: Clients and PEESOS Configuration

Clients Hosts PEESOS

Processor AMD Processor 2 Virtual ProcessorVishera 4.2 Ghz

Memory 32 GB RAM DDR3 2GB RAMCorsair Vegeance

Hard Disk HD 2TB Seagate 50GBSata III 7200RPM
Operating Linux Ubuntu Server Linux Ubuntu Server

System 12.04 6u Bits LTS 12.04 6u Bits LTS

Applications
Java JDK 1.7 Qemu / KVM Java JDK 1.7

Apache Axis2 1.5 Apache Axis2 1.5
Apache Tomcat 7.0 Apache Tomcat 7.0

1) Target Architeture: The WSARCH architecture will
briefly be presented to allow a better understanding of the
test system. WSARCH has five distinct modules: the client
application, the providers, the Broker, the UDDI Universal
Description, Discovery and Integration registry and the Log
Server. Figure 4 shows the relationships between these
components.

Clients perform requests with QoS parameters to the
Broker. The Broker is responsible for finding the specific
service to meet the request, which will be available in one of
the providers [7]. Providers are repositories of services and
work closely with a core group responsible for processing
the messages of requests and responses, called Apache Axis
2 [5]. The location and information of service providers are
stored in a UDDI registry, which was modified to contain
qualifications (QoS) and characteristics of services.

The architecture also has the Log Server, which is a
database responsible for storing all data transactions between
components. Besides, information of quality of service of-
fered by providers are updated every second, collected by a
Ganglia monitor [10] and transmitted from one module to
another under Broker management. Table III describes the
configuration of the WSARCH components.



Service 

Consumer

Stage Order: 1 to 7

1

P1

3

5

P2 Pn

LogServer

2

6
4

7Legend

Log-Interaction

Broker - UDDI

Broker - Provider

Client - Broker

WSARCH

Connecting Applications

QoS Broker

(Engine)

UDDI

QoS 

Information

Service 

Description

Ganglia

UDDI

Services 

Selection

Ganglia

Broker

ServicesServices Services

QoS 

Information
QoS 

Information
QoS 

Information

Update QoS info (2s)

Log Info QoS (1s)

LOGDAM

Figure 4: Web Service Architecture - WSARCH [5]

Table III: WSARCH Architeture Configuration

WSARCH Environment
Broker and Hosts Virtual Machines
LogServer (Provider and UDDI)

Processor AMD Processor 2 Virtual ProcessorVishera 4.2 Ghz

Memory 32 GB RAM DDR3 2GB RAMCorsair Vegeance

Hard Disk HD 2TB Seagate 50GBSata III 7200RPM
Operating Linux Ubuntu Server Linux Ubuntu Server

System 12.04 6u Bits LTS 12.04 6u Bits LTS

Applications
Java JDK 1.7 Qemu/KVM Java JDK 1.7

Apache Axis2 1.5 Apache Axis2 1.5
Apache Tomcat 7.0 Apache Tomcat 7.0

WSARCH has a standard selector named Default Selector,
which works directly in the Broker. This selector takes QoS
values as parameter for provider selection and prevents them
being overloaded. These QoS values are updated from time
to time by the service providers.

B. Experiment Design

We used the model available in PEESOS tool to design
the test experiment. Relevant parameters such as number
of providers, number of clients, client locations, workload
type, application parameters and number of replications
were defined to gather as much information as possible to
compare the performance in server and client sides.

Table IV shows the experiment design values. A full
factorial experiment is performed based on diferents levels
of four factors: number of providers (1 and 12), number of
clients (8 and 15), workload type (exponential and uniform)
and factorial number (1.000 and 3.000), totaling a set of
sixteen experiments. These experiments are divided into four
subsets, each one with four experiments. All experiments
are replicated ten times to get a 95% confidence interval.
Besides, each experiment is performed with a total of one
thousand and two hundred requests, where the total number
of requests is divided by the total number of clients. Also,
the times to find the service in the UDDI repository were

Table IV: Experiment Design

Providers Clients Workload Factorial Subset
Exp1 1 15 Exponential 1.000

1Exp2 1 15 Exponential 3.000
Exp3 1 15 Uniform 1.000
Exp4 1 15 Uniform 3.000
Exp5 1 8 Exponential 1.000

2Exp6 1 8 Exponential 3.000
Exp7 1 8 Uniform 1.000
Exp8 1 8 Uniform 3.000
Exp9 12 15 Exponential 1.000

3Exp10 12 15 Exponential 3.000
Exp11 12 15 Uniform 1.000
Exp12 12 15 Uniform 3.000
Exp13 12 8 Exponential 1.000

4Exp14 12 8 Exponential 3.000
Exp15 12 8 Uniform 1.000
Exp16 12 8 Uniform 3.000

subtracted from the total response time to allow for analysis
to focus on execution time of services.

The Exponential Workload was generated based on Equa-
tion 1 [14],

f(x, λ) =

{
λe−λx for x ≥ 0, (1a)
0 for x < 0. (1b)

where the mean of exponential distribution is represented
by λ = 9000, ∀x ∈ [0,∞). Uniform Workload was generated
based on the Equation 2 [4],

f(x) =

{ 1

b− a
for a ≤ x ≤ b, (2a)

0 for x < a or x > b. (2b)

where the minimum value represented by a = 1000 and
the maximum value represented by b = 21000. The requests
interval are defined based on random values from cumulative
distribution function of Equations 1, 2. The values of λ in
Equation 1 and a and b in Equation 2 were set to guarantee
the maximum time interval closer between each other.

C. PEESOS Interface Configuration

The experiment configuration followed the interface
model fluxogram, shown in Figure 5. To ease the under-
standing, we will show the configuration of Expr1 along
with the explanation of the tool configuration fluxogram.

Firstly, in the “Experiment Configuration” phase, we need
to input the Number of Clients (15), Number of Providers
(1), Number of Replications (10), Number of Requests (80),
Service (Factorial) and Client (broker-client) application and
the Interval between experiments (10 min) like in Figure 6.

Then, we need to input the service parameters (1000-
3000) in the “Service and Client App. Configuration” phase.
After, we go to the “Clients Configuration” step, where we
will select the Clients IPs (192.168.0.{20, 30, ... , 170, 180})
and then we need to configure the providers (port 2012).
After these phases we go to the “Experiment Review” phase,



Begin Experiment 
Configuration

Number of 
Clients

Number of 
Providers

Number of 
Replications

Number of 
Requests

Service and 
client 

applications 

Interval 
between 

experiments

Service and Client 
App. Configuration

Service 
parameters

Available Clients 
Configuration

Clients

Available Providers 
Configuration

Providers

Experiment Review

Transfer App. 
to clients

Experiment 
Execution

Transfer App. 
to providers

Execute 
experiments

Design of 
Experiments 
Specification

Finish Experiments

Experiment 
#ID

End

Figure 5: PEESOS Interface Fluxogram

Figure 6: PEESOS Setup

where the App will be transferred to the clients and the
“Design of Experiments Specification” is created. Finally,
the experiment is executed in the “Experiment Execution”
phase, where the Apps will be transferred to the providers
and the experiment will be executed. Then we move to the
“Finish Experiments” phase, where an unique Experiment ID
will be generated to retrieve the experiments results later.

V. RESULTS

In this section are reported the results obtained by the
execution of the experiments described in Section IV. The
gathered data enabled the analysis of the WSARCH execu-
tion chain and identify problems using UDDI repository.

A. Results without WSARCH UDDI

The results generated by the PEESOS tool execution
without WSARCH UDDI are shown in Figure 7 which
shows the interval plot and a square which indicates the
mean in seconds. Analysing the results it is possible to
notice that experiments with 15 clients took longer time to
complete than those experiments with 8 clients. The factorial
calculation of 1000 takes less time than factorial calculation
of 3000.

Number Of Clients

Factorial

Number Of Providers

158

3000100030001000

121121121121

2,8

2,7

2,6

2,5

2,4

2,3

2,2

2,1

158

3000100030001000

121121121121

Exponential

T
o
ta
l 
T
im
e
 (
s
)

Uniform

Number Of Clients

Factorial

Number Of Providers

Figure 7: Interval plot graphic without UDDI search time

In a deeper analysis, we noticed that the exponential distri-
bution using 15 simultaneous clients causes more overhead



than the uniform distribution with any other combination
of factors. With 8 simultaneous clients and using just 1
provider, the exponential distribution has a slightly higher
average than uniform distribution for both factorial values.
When we used 12 providers, the time results for both distri-
butions were statically equals using the factorial calculations
for 1000 and 3000.

Using 12 providers, the total time of request was better
than 1 provider for 8 clients. When 15 clients are used, the
time for both cases are statistically equivalent. This behavior
is explained by the selection algorithm used in WSARCH,
which does not have an update interval consistent with the
rate of arrival of requests.

Number Of Clients

Factorial

Number Of Providers

158

3000100030001000

121121121121

7

6

5

4

3

2

158

3000100030001000

121121121121

Exponential

T
o
ta
l 
T
im
e
 (
s
)

Uniform

Number Of Clients

Factorial

Number Of Providers

Figure 8: Box plot graphic without UDDI search time

Figure 8 shows the box plot based on the 1200 requests
performed. The box plot makes it possible to identify the
time periods of warm up, outliers and how the requests
behave. The major part of requests which took longer than 4
seconds, occurs during the warm up period (possible caching
and JIT - Just In Time compilation effects). The experiments
with 15 clients had more outliers than the experiments with
8 clients. It happens because experiments with 15 clients
the simultaneous requests increases and, consequently, the
provider side has to handle a longer queue of requests.
The box of each experiment has the same characteristics
as Figure 7.

B. Results with WSARCH UDDI

The results generated by the PEESOS tool execution with
WSARCH UDDI are shown in Figure 9, the interval plot and
a square indicate the mean in seconds. The overall behaviour
of this experiment is similar to the one presented in Figure
7. The experiments with 15 clients took longer time to
complete than the experiments with 8 clients. It is important
to highlight the results behaviour of 12 providers, which
the total response time were higher than in the result of 1

Number Of Clients
Factorial

Number Of Providers

158

3000100030001000

121121121121

3,4

3,2

3,0

2,8

2,6

2,4

2,2

158

3000100030001000

121121121121

Exponential

T
o
ta
l 
T
im
e
 (
s
)

Uniform

Number Of Clients

Factorial

Number Of Providers

Figure 9: Interval plot graphic with UDDI search time

provider. This seems very surprising, but when we consider
the WSARCH UDDI time, an additional overhead occurs
proportionally to the amount of records in the repository.

Number Of Clients

Factorial

Number Of Providers

158

3000100030001000

121121121121

8

7

6

5

4

3

2

158

3000100030001000

121121121121

Exponential

T
o
ta
l 
T
im
e
 (
s
)

Uniform

Number Of Clients

Factorial

Number Of Providers

Figure 10: Box plot graphic with UDDI search time

In Figure 10 the box plot presents the results from an
experiment where 1200 requests were performed. Similar to
the experiment presented in Figure 8, in the warm up period,
the major part of requests took longer than 4 seconds for 1
provider and 5.5 seconds for 12 providers. As in Figure 9, 12
providers have the box and outliers higher than experiments
with 1 provider.

Analysing these results, we concluded that the increasing
number of UDDI registered providers is a bottleneck in the
WSARCH architecture. During the experiment others prob-
lems were identified, for instance, the Tomcats applications
on the providers side were crashing as the log file got too



large.

VI. CONCLUSION

In this paper the PEESOS tool was presented, the main
goal of this tool is to facilitate the planning and execution of
experiments in SOA. Capacity planning is used in PEESOS
to observe the behavior of these architectures, with different
types of workload. By using PEESOS, the bottlenecks can
be detected as we demonstrated in Section V. Furthermore,
the use of a real collaborative environment consider factors,
which may influence specific attributes of a request that
are not included in a simulated experiment, for example,
network traffic congestion, routing, software configuration,
etc.

PEESOS improvements such as a new interface, increas-
ing the availability of the tool to be used by many users in the
same time, and mechanisms for fault tolerance in the server
and client side will be addressed in the future. The prototype
presented in this paper and wizard guide is available in
http://peesos.wsarch.lasdpc.icmc.usp.br/ and the experiments
presented in this paper can be repeated according to Section
IV-C.

VII. ACKNOWLEDGEMENTS

This project was financially supported by National Coun-
sel of Technological and Scientific Development (CNPQ),
process number 133841/2012-0 and Sao Paulo Research
Foundation (FAPESP), process number 11/09524-7 and
13/26420-6.

REFERENCES

[1] M. Bozkurt, M. Harman, and Y. Hassoun. Testing and ver-
ification in service-oriented architecture: A survey. Software
Testing Verification and Reliability, 23(4):261–313, 2013.

[2] P. Brebner. Service-oriented performance modeling the mule
enterprise service bus (esb) loan broker application. Confer-
ence Proceedings of the EUROMICRO, pages 404–411, 2009.

[3] G. Canfora and M. Penta. Service-oriented architectures
testing: A survey. In A. Lucia and F. Ferrucci, editors,
Software Engineering, volume 5413 of Lecture Notes in
Computer Science, pages 78–105. Springer Berlin Heidelberg,
2009.

[4] G. Casella and R. Berger. Statistical inference. Duxbury
advanced series in statistics and decision sciences. Thomson
Learning, 2002.

[5] J. C. Estrella, R. H. C. Santana, and M. J. Santana. WSARCH:
An Architecture for Web Services Provisioning with QoS
Support: Performance Challenges. VDM Verlag Dr. Mller,
2011.

[6] Y. Gu and Y. Ge. Search-based performance testing of appli-
cations with composite services. In Web Information Systems
and Mining, 2009. WISM 2009. International Conference on,
pages 320–324, 2009.

[7] P. Harshavardhanan, J. Akilandeswari, and R. Sarathkumar.
Dynamic web services discovery and selection using qos-
broker architecture. In Computer Communication and Infor-
matics (ICCCI), 2012 International Conference on, pages 1
–5, jan. 2012.

[8] R. Jain. The art of computer systems performance analysis:
techniques for experimental design, measurement, simulation,
and modeling. Wiley professional computing. Wiley, 1991.

[9] P. Kalamegam and Z. Godandapani. A survey on testing soa
built using web services. International Journal of Software
Engineering and its Applications, 6(4):91–104, 2012.

[10] M. Massie, B. Chun, and D. Culler. The ganglia distributed
monitoring system: design, implementation, and experience.
Parallel Computing, 30(7):817–840, 2004.

[11] P. Mayer and D. Lübke. Towards a bpel unit testing frame-
work. In Proceedings of the 2006 Workshop on Testing,
Analysis, and Verification of Web Services and Applications,
TAV-WEB ’06, pages 33–42, New York, NY, USA, 2006.
ACM.

[12] D. Meirong and C. Shaoming. Design and realization of soa
based management system for open experiment lab. In Con-
sumer Electronics, Communications and Networks (CECNet),
2012 2nd International Conference on, pages 3182 –3185,
april 2012.

[13] D. Petrova-Antonova, S. Ilieva, and V. Stoyanova. Tessi: A
web service testing tool: Demonstration paper. In Research
Challenges in Information Science (RCIS), 2013 IEEE Sev-
enth International Conference on, pages 1–2, 2013.

[14] S. Ross. Introduction to Probability and Statistics for Engi-
neers and Scientists. Elsevier Science, 2009.

[15] M. Smit and E. Stroulia. Simulating service-oriented systems:
A survey and the services-aware simulation framework. IEEE
Transactions on Services Computing, 99(PrePrints), 2012.

[16] H. Sneed and S. Huang. Wsdltest - a tool for testing web
services. In Web Site Evolution, 2006. WSE ’06. Eighth IEEE
International Symposium on, pages 14–21, 2006.

[17] Y. Xing and E. Yao. Remote collaborative experiments based
on service-oriented architecture(soa). In Signal Processing
Systems (ICSPS), 2010 2nd International Conference on,
volume 2, pages V2–605 –V2–608, july 2010.

[18] Y. Zhang, W. Fu, and C. Nie. monadws: A monad-based
testing tool for web services. In Proceedings of the 6th
International Workshop on Automation of Software Test, AST
’11, pages 111–112, New York, NY, USA, 2011. ACM.


