
Dynamic Compressed Strings with Random Access

Roberto Grossi1, Rajeev Raman2, S. Srinivasa Rao3, and Rossano Venturini1

1 Dipartimento di Informatica, Università di Pisa, Italy
2 Department of Computer Science, University of Leicester, UK

3 School of Computer Science and Engineering, Seoul National Univerity, Korea

Abstract We consider the problem of storing a string S in dynamic
compressed form, while permitting operations directly on the compressed
representation of S: access a substring of S; replace, insert or delete a
symbol in S; count how many occurrences of a given symbol appear in
any given prefix of S (called rank operation) and locate the position of
the ith occurrence of a symbol inside S (called select operation). We
discuss the time complexity of several combinations of these operations
along with the entropy space bounds of the corresponding compressed
indexes. In this way, we extend or improve the bounds of previous work
by Ferragina and Venturini [TCS, 2007], Jansson et al. [ICALP, 2012],
Nekrich and Navarro [SODA, 2013].

1 Introduction

The volume of unstructured, semi-structured, and replicated data, such as tex-
tual data, text with markup, and data backup and log analysis, has been grow-
ing much faster than structured (relational) data in recent years [IDC’s “Digital
Universe Survey”, 2011]. Such non-relational data is commonly viewed as a (of-
ten highly compressible) string, and the processing of this data is not always
amenable to external-memory solutions. Considerations like these, and the com-
mon practice of storing important data in the main memory of a computing
cluster, have motivated the development of compressed string storage schemes
[1,2,3], which store a string S[1, n] from the alphabet [σ] = {1, . . . , σ} in com-
pressed form, while allowing random access to the string via the operation:

Access(i,m): return the substring S[i, i+m−1] for m ≥ 1 and 1 ≤ i ≤ n−m+1.

These schemes have been developed on the standard RAM model with a word
size of Θ(lg n) bits. They support Access optimally (as a substring of length
` = Θ(lgσ n) fits in O(1) words, Access(i, `) executes in O(1) time) and aim to
minimize the space in bits, expressed as the sum of two components that, when
S is compressible, is smaller than the n lg σ bits used by S in ‘raw’ form:

– nHk(S) where Hk(S) is the k-th order empirical entropy of S (a measure of
compressibility, see the end of this section), and k ≥ 0 is an integer, and

– the redundancy, or any additional space required to support random access.

Table 1: Summary of discussed results. Here ` = Θ(lgσ n), ρ = (k lg σ + lg lgn)/lgσ n,
λ = lg n/ lg lgn, δ = min{lgσ n, (k + 1)λ}, † = time to Access one symbol.

Access(i, `) Replace Insert/Delete Rank/Select space (bits) ref.
O(1) — — — n(Hk +O(ρ)) [1,2,3]
O(1) O(δ) — — n(Hk +O(ρ)) [5]
O(1) O(1/ε) — — n(Hk +O(ε(k + 1) lg σ + ρ)) [5]
O(1) O(1) — — n(Hk +O(ρ)) Thm.1
O(λ) O(λ) O(λ) — n(H0 +O(lg lgn/ lgσ n)) [5]
O(λ) O(λ) O(λ) — n(Hk +O(ρ+ k lg lgn/ lgn)) [5]
O(λ) O(λ) O(λ) — n(Hk +O(lg lgn/lgσn)) Thm.2

O(λ)† O(λ) O(λ) O(λ) n(H0 +O(1)) +O(σ(lg σ + (lgn)1+ε)) [6]
O(1) O(λ) — O(λ) n(Hk +O(lg lgσ+ ρlg lgn)) Cor.1

The redundancy is a quantity of significant fundamental interest, particularly
for lower bounds (see [4] and references therein), and is critical in practice.
The best space upper bound is currently n(Hk(S) + O(ρ(k, σ, n))) bits, which
holds simultaneously for all 0 ≤ k ≤ lgσ n, where ρ(k, σ, n) = k lg σ+lg lgn

lgσ n
. As

k increases, the Hk term decreases, but ρ increases. However, so long as k =
o(lgσ n), ρ = o(n lg σ) is asymptotically smaller than S in ‘raw’ form. The data
structure of [1] attains the above space bound and supports Access in O(1) time.
We now describe our contributions in the context of related work.

Dynamic Access-only Sequences. The storage schemes of [1,2,3] are all static,
i.e., do not permit changes to S (see Table 1, first row). Although there has been
work on storing dynamic sequences in a compressed format, the gap (in com-
pression performance and Access time) with the static storage schemes remained
large, until a recent breakthrough result by Jansson et al. [5]. They considered
expanding the repertoire to include, in addition to Access:

Replace(i, c): replace S[i] by a symbol c ∈ [σ].
Insert(i, c): insert the symbol c into S between positions i−1 (if it exists) and i,

and make S one symbol longer.
Delete(i): delete S[i] and make S one symbol shorter.

Jansson et al. gave two schemes (Table 1, rows 2 and 3) that achieve “high-
order” compression and O(1) time for Access(i, `), but effectively do not sup-
port O(1)-time Replace. To achieve a redundancy of O(ρ(k, σ, n)), Replace takes
O(min{lgσ n, (k + 1) lg n/ lg lg n}) time (Table 1, row 2). Unfortunately, the re-
dundancy needed to get O(1)-time Replace (take 1/ε = O(1) in row 3) is rather
large: the first term is asymptotically larger even than S in ‘raw’ form, unless
k is constant. Jansson et al. state that removing the first term while obtaining
O(1)-time Access(i, `) and Replace is an open question, which we resolve here.

– We give a representation whose space usage is n(Hk(S) + O(ρ(k, σ, n))),
which matches the redundancy of the best known static schemes [1,2,3], and
supports Access(i, `) and Replace in O(1) time (Table 1, row 4). The data
structure is simple and has potential to be practical.

Jansson et al. also gave a storage scheme (Table 1, rows 5 and 6) supporting
all four operations in O(lg n/ lg lg n) time, which is optimal [7].

2

– We give a scheme with space usage n(Hk(S) +O(lg lg n/ lgσ n)) bits, for all
k ≤ 1

8 lgσ n, that supports all four operations in O(lg n/ lg lg n) time (Table 1,
row 7). While the redundancy of Jansson et al. is greater than that of the
static schemes of [1,2,3], ours is less. Our redundancy has (surprisingly) no
significant dependency on k: increasing k does not affect space usage.

Dynamic Rank/Select Sequences. In other recent work, Navarro and Nekrich [6]
considered dynamic sequences that support further operations on S:

Rank(c, i) : return |{j ≤ i|S[j] = c}|, for any c ∈ [σ] and 1 ≤ i ≤ n.

Select(c, i) : return the position of the i-th occurrence of c in S (−1 if there are
fewer than i occurrences of c in S), for any c ∈ [σ] and i ≥ 1.

Rank and Select operations are fundamental components of a number of space-
efficient data structures used in a variety of applications, such as indexing com-
pressed XML documents [8] or compressed text [9,10]. Improving on a number
of earlier papers, Navarro and Nekrich finally achieved an optimal [7] (amor-
tized) time of O(lg n/ lg lg n) (Table 1, second-to-last row). A key shortcoming is
that they are unable to achieve “higher-order” entropy compression. Also, their
Access operation costs O(lg n/ lg lg n) time per symbol retrieved.

– We give a scheme that occupies nHk(S) +O(n(lg lg σ+ (k lg σ lg lg n)/ lgσ n)
bits and supports Access(i, `) in O(1) time, Rank and Select in O(lg n/ lg lg n)
time, and Replace in O(lg n/ lg lg n) amortized time (Table 1, last row).

Compared to [6], we achieve higher-order entropy compression, which had not
been achieved before for dynamic strings supporting Rank/Select and we can
retrieve substrings of length ` quickly. However, our redundancy is worse and
the Replace operation is weaker than a general Insert/Delete. We obtain this
result by a technique that could be used in other problems. Compressed string
storage schemes are the basis of an effective way of designing space-efficient data
structures [11]: de-couple the storage of the data (S) from the succinct indices
used to support operations. Our technique is to ‘encapsulate’ a static Rank/Select
succinct index [12] within a ‘dynamization’ index, while updating S using the
dynamic storage scheme of Theorem 1.

Empirical Entropy. Here we recall this notion. For each c ∈ [σ], let pc = nc/n be
its empirical probability of occurring in S, where nc is its number of occurrences.
The zero-th order empirical entropy of S is defined as H0(S) = −

∑σ
c=1 pc lg pc.

For any string w of length k, let wS be the string of single symbols following the
occurrences of w in S, taken from left to right. The kth order empirical entropy
of S is defined as Hk(S) = 1

n

∑
w∈[σ]k |wS | H0(wS). Not surprisingly, for any

k ≥ 0 we have Hk(S) ≥ Hk+1(S). The value nHk(S) is a lower bound to the
output size of any compressor that encodes each symbol of S only considering
the symbol itself and the k immediately preceding symbols [13].

3

2 Entropy bounds for dynamic storage of strings

This section presents two main results on storing a dynamic compressed string.

Theorem 1. Given a string S[1, n] over the alphabet Σ = [σ] = {1, . . . , σ},
there exists an index storing S that supports Access(i,m) in O(1 + m

lgσ n
) time

and Replace in O(1) time (bounds are worst-case and optimal). The overall space
occupancy is nHk(S) +O(nk lg σ+lg lgn

lgσ n
) bits for all k = o(lgσ n).

Theorem 2. Given a string S[1, n] over the alphabet Σ = [σ], there exists an
index storing S that supports Access(i,m) in O(lgn

lg lgn + m
lgσ n

) time, and Replace,

Insert, Delete in O(lgn
lg lgn) time (bounds are worst-case and optimal). The overall

space occupancy is nHk(S) +O(n lg lgn
lgσ n

) bits for all k ≤ 1
8 lgσ n.

2.1 Supporting Access and Replace (Theorem 1)

Squeezing the current string S into S`. At any time we conceptually represent S
as a sequence S` of n′ = dn/`e macro-symbols over the macro-alphabet Σ`,
where ` = d 12 lgσ ne. Each macro-symbol is made up of ` consecutive symbols in
S (namely, S`[i] = S[(i−1)·`+1, . . . , i·`], for any 1 ≤ i ≤ n′) and thus the macro-
alphabet has size σ` = Θ(

√
n). In this way, the 0-th order entropy-encoding of S`

gives the k-th order entropy-encoding of S as stated below.

Lemma 1 ([1]). For any `, with 1 ≤ ` ≤ n, it holds n′H0(S`) ≤ nHk(S) +
O(n′k lg σ), simultaneously over all k ≤ `.

Lemma 1 implies that if we can maintain a dynamic compressed represen-
tation of S` in n′H0(S`) + O(n′ lg lg n) bits, we obtain a dynamic compressed
representation of S in nHk(S) +O(nk lg σ+lg lgn

lgσ n
) bits.

Codewords for the macro-alphabet Σ` of S`. We now focus on a dynamic encod-
ing of the macro-symbols in Σ` to obtain a 0-th order entropy-encoding of S`. We
divide the whole set of assigned codewords into classes Cj , where 0 ≤ j ≤ 1

2 lg n′,
and each of the codewords in Cj is of fixed length j + 3 bits. We also assign a
nonempty set Γc of codewords to each macro-symbol c ∈ Σ` (and remark that
c can be encoded by any codeword in Γc). We want to preserve the following
invariants (on the number of codewords):

1. |Cj | < 2j+3, for any 0 ≤ j ≤ 1
2 lg n′.

2. |Cj ∩ Γc| ≤ 1, for any class Cj and any macro-symbol c ∈ Σ`.
3. |Γc ∩ Γc′ | = 0, for any two distinct macro-symbols c, c′ ∈ Σ`.

We will discuss the rationale of the invariants 1–3 and how to maintain them in
the next paragraphs. From a data structure point of view, for each class Cj we
keep (i) a decoding table (an array of 2j+3 entries) Dj that maps each codeword
to its assigned macro-symbol and (ii) a free-list Fj of available codewords that

4

can be still assigned to that class if required (where the next available codeword
is the head of Fj). Moreover, for each macro-symbol c we keep (iii) an array Wc

of 1
2 lg n′ entries that represent Γc: entry Wc[j] contains the codeword of Cj that

has been assigned to c, or ⊥ when there is no such codeword; and (iv) a counter
fc that stores the number of occurrences of c within the current S`. The space

required for storing (i)–(iv) is O(
∑ 1

2 lgn′

j=0 2j+3(lg σ`+lg n)+σ` lg2 n′+σ` lg n′) =

O(
√
n lg n lg n′) = o(n′) bits.

Dynamic 0-th order entropy-encoding of S`. The encoding of S` is obtained by
concatenating the codewords of its n′ macro-symbols: given any occurrence of
macro-symbol c, this occurrence is encoded by any chosen codeword from Γc.
However the codewords may change during the lifetime of S`, and thus we cannot
simply store the resulting encoding of S` as a binary string: we need to access and
modify codewords, and to increase or reduce the space reserved to them. Hence,
we use the data structure in [5, Th.6] that stores a set of n′ binary strings of up to
lg n′ bits each, and supports the following two operations: (1) Address(i) returns
a memory pointer to the ith binary string (1 ≤ i ≤ n′), and (2) Realloc(i, b)
changes the length of the ith binary string to b bits (b ≤ lg n′), as restated next
using our parameters.

Lemma 2 ([5]). Let B be a set of n′ binary strings, each of length at most lg n′,
and let s be the total number of bits for all the strings in B. We can store B in
s+O(n′ lg lg n+ lg4 n) bits while supporting address and realloc in O(1) time.

Our plan is to use Lemma 2 with s = n′H0(S`) + O(n′): by the discussion
in the previous paragraphs, the total space occupancy of our encoding scheme
is n′H0(S`) +O(n′ lg lg n) bits as claimed.

Initialization. The macro-symbols in S` are grouped into classes having approx-
imately the same number of occurrences. Specifically, we scan S` and compute
the number of occurrences fc of each macro-symbol c that appear in it. Then
we assign one class Cj to each each c using fc, so that n′

2j < fc ≤ n′

2j+1 .4 We
initialize each class Cj to be empty and set its free-list Fj to contain all the 2j+3

binary codewords of fixed length j + 3 bits. We also initialize each array Wc

to contain all ⊥s (see points (i)–(iv) in a previous paragraph). Then, for each
macro-symbol c with fc > 0, say of class Cj , we extract a codeword w from Fj
and set Dj [w] = c and Wc[j] = w. Note that after the initialization, we have a
single codeword shared by all the occurrences of the same macro-symbol but, as
we will see shortly, this is not mandatory during the rest of the lifetime of S`.

Operation Access(i,m). Let p = di/`e. We retrieve the pth macro-symbol and
its next O(m/`) macro-symbols (if needed), taking O(1) time per macro-symbol
(i.e. ` symbols in S) as follows. We first retrieve the pth codeword, say w, and its

4 An exception is the last class Cj for j = 1
2

lgn′, containing the macro-symbols with

less than n′

2j+1 = O(
√
n′) occurrences.

5

length, say j′, using address as in Lemma 2. In this way we infer that w ∈ Cj′−3
and return the ` symbols of Σ that are stored in table entry Dj′−3[w] in O(1)
time (since they take a total of O(lg n) bits). We repeat this task O(1 + m/`)
times for p, p+ 1, . . . , thus attaining a cost of O(1 + m

lgσ n
) time.

Operation Replace(i, c). We first describe an amortized implementation, which
will then be deamortized. During an execution of Replace, the number of oc-
currences of a macro-symbol can change. Thus, macro-symbols may move to
different classes in the lifetime of the data structure. Once a macro-symbol en-
ters a class for the first time, it is assigned an available codeword of that class.
Since the number of available codewords in any class is limited, it may happen
that the last available codeword is consumed in this way. For the moment, we
rebuild the whole data structure from scratch in that case. We have thus two
conflicting goals. On one hand, the codewords of a class should be as large as pos-
sible to postpone the rebuilding. On the other hand, these codewords should be
as small as possible to limit the loss with respect to entropy. We will show that
rebuilding is needed only after Ω(n′) Replace operations and, simultaneously,
that the loss in the entropy is just O(1) bits per macro-symbol of S`.

Operation Replace(i, c) must change the pth macro-symbol in S`, where p =
di/`e. Wlog assume that S`[p] = x has to be replaced by macro-symbol y (i.e.,
y is obtained from x by substituting x’s symbol in position i− (p− 1)` with c).
We perform the following steps and maintain Invariants 1–3 mentioned earlier:

1. Set fx = fx − 1 and fy = fy + 1 (data structures (iv)).
2. Let Cj be the current class of macro-symbol y (for the updated fy):

(a) If there is a codeword in Cj assigned to y, let e be such a codeword.
(b) If such a codeword does not exist, extract e from Fj and assign it to y.

3. Encode S`[p] with e (see Lemma 2) and update data structures (i)–(iii).
4. If |Cj | = 2j+3 (i.e., Fj is empty), rebuild all the data structures from scratch.

Lemma 3. Ω(n′) Replace operations are required before |Cj | = 2j+3, for any j.

Proof. Initially, at most 2j codewords of class Cj are used. Indeed, a macro-

symbol c is in class Cj iff its number of occurrences fc is in (n
′

2j ,
n′

2j+1]. Pes-
simistically, assume that all the macro-symbols in the classes Cj−1 and Cj+1

move to class Cj . We have at most 2j+2 codewords assigned to macro-symbols
in classes Cj−1, Cj and Cj+1. Any other macro-symbol c has a number of oc-

currences Θ(n
′

2j) away from the interval (n
′

2j ,
n′

2j+1]. Thus, to use the remaining

(at least) 2j+3− 2j+2 = 2j+2 codewords, we need at least 2j+2×Θ(n
′

2j) = Ω(n′)
Replace operations. ut

The time complexity of Replace is clearly dominated by Step 4. Indeed,
Steps 1–3 take O(1) time while Step 4 requires O(n′) time. Lemma 3 implies
that we can amortize this cost to O(1) time. To deamortize the cost, we employ
an incremental rebuilding scheme to obtain our claimed bounds.

We scan the macro-symbols in S` and update their codewords and data
structures, namely, the codeword of the macro-symbol at hand is replaced with

6

the codeword of its current class. We can release and reassign any codeword
that is no longer in use in the encoding of S` using the free-lists. More precisely,
we fix a constant d and, at the rth Replace, we update the codewords of the d
macro-symbols of S` in positions 1+(d ·r) mod n′, . . . , 1+(d ·r+d−1) mod n′.
If a codeword is replaced, we check if it is no longer in use and, if so, we release
it to Fj , where its length is j + 3. By Lemma 3, it follows that this mechanism
guarantees that no class can use all its codewords because the reassignment is
faster by a constant factor and terminates before any condition |Cj | = 2j+3 may
happen (i.e., the condition in Step 4 does not hold anymore at this point).

Bounding the space occupancy. It remains to prove that in Lemma 2, our s is at
most

∑
c∈Σ`(fc lg n′

fc
+ O(fc)) = n′H0(S`) + O(n′) bits. (Recall that this gives

the bound of Theorem 1 by Lemma 1.) It suffices to prove that the overall length
of the codewords in Γc representing the fc occurrences of any macro-symbol c
in S` can be bounded by fc lg n′

fc
+O(fc) bits.

Lemma 4. For any macro-symbol c ∈ Σ`, the overall space required by the fc
codewords of c in the encoding of S` is fc lg n′

fc
+O(fc) bits.

Proof. Assume that Cj is the current class of macro-symbol c (i.e., n′

2j < fc ≤
n′

2j+1). In the ideal scenario, all the fc occurrences are encoded with the j + 3-
length codeword of class Cj . In this case, each of them would require j + 3 =

lg n′

fc
+O(1) bits and the thesis would follow. However, there are occurrences of

c encoded with codewords from other classes. For each class Ci, let fc,i be the
number of occurrences of c encoded with a codeword of class Ci. The amount of

additional space over the ideal scenario above can be bounded by
∑ 1

2 lgn′

i=0 fc,i ·
(i − j) ≤

∑ 1
2 lgn′

i>j fc,i · (i − j) = O(fc), where the latter equality follows by

observing that fc,i ≤ fc
2i−j−1 , for any i > j. ut

2.2 Supporting Access, Replace, Insert and Delete (Theorem 2)

Different rules of the game. As previously mentioned, the lower bound ofΩ(lgn
lg lgn)

time in [7] applies to the operations in this setting. Keeping this in mind, we
can orchestrate a different data layout than the one described in Section 2.1
as we have O(lgn

lg lgn) time per operation. This, in turn, allows us to reduce the

redundancy from O(nk lg σ+lg lgn
lgσ n

) to O(n lg lgn
lgσ n

) bits and, moreover, the resulting

redundancy is now independent of k.
We need an alternative to Lemma 1 that uses the first order entropy H1 and

variable-length blocks. Consider any partition of S as a sequence Sm,M of n′

blocks, where 0 ≤ m ≤M ≤ n. Each block is a substring of S of length ranging
from m to M and can be seen as belonging to the macro-alphabet Λ = ∪Mi=mΣi.
Note that we use the term ‘block’ rather than ‘macro-symbol’ (as in Section 2.1)
because blocks are now of variable length and will be split and merged when
necessary; thus, we will refer to Sm,M as a sequence of blocks. We now relate
H1(Sm,M) to Hk(S) as follows.

7

Lemma 5. For any m,M , with 0 ≤ m ≤ M ≤ n, it holds n′H1(Sm,M) ≤
nHk(S) +O (n′(1 + lg(M −m+ 1)) + k lg σ) , simultaneously over all k ≤ m.

Proof. To obtain this inequality we define a k-order encoder E giving a compres-
sion size for S that is lower bounded by n′H1(Sm,M) bits and upper bounded
by nHk(S) +O(n′(1 + lg(M −m+ 1)) + k lg σ) bits (so the claim will follow).

We first discuss the upper bound. For every position i (k ≤ i ≤ n), let pi
denote the empirical conditional probability of seeing symbol S[i] after the k-
order context S[i − k, i − 1]. Given these pi’s, the k-order arithmetic encoder
represents S within

∑n
i=k lg pi + 2 + k lg σ ≤ nHk(S) + 2 + k lg σ bits (see e.g.,

[1,3]).5 Using this fact, our encoder E encodes the blocks of S individually: (1) it
writes the length of the block by using O(1 + lg(M −m+ 1)) bits; (2) it encodes
the symbols in the block with the aforementioned k-order arithmetic encoder.
This approach increases the above encoding by O(n′ + n′ lg(M −m + 1)) bits.
The size is at most nHk(S)+O(n′+n′ lg(M−m+1))+O(k lg σ) bits, as claimed.

We now discuss the lower bound. Note that the information content of Sm,M
and S is the same as they represent the same string, and E assigns to each block
of Sm,M its own binary codeword. These codewords do not uniquely identify a
block (i.e., there may exist two different blocks that have been assigned the same
codeword). However, since the k-order context of any symbol is within its own
block or the preceding block, for any block B, these codewords uniquely identify
all the blocks that follows B in Sm,M . Thus, the compression size of E has to
be at least n′H1(Sm,M) bits, where blocks of Sm,M are seen as macro-symbols
from the alphabet Λ: the first-order entropy is a lower bound for any compressor
which encodes each macro-symbol with a codeword that only depends on the
macro-symbol itself and the immediately preceding one [13]. ut

Toy case. Armed with Lemma 5, let us first study the static case to achieve the
first order entropy for S`,`, with ` = m = M = 1

8 lgσ n, and O(lg n/ lg lg n) time
for Access. Lemma 5 implies that we obtain a compressed representation of S in
nHk(S) +O(n lg lgn

lgσ n
) bits.

We divide S`,` into super-blocks of b = lg n/ lg lg n blocks each. (a) For
each block c ∈ S`,`, we construct a table T 1

c that stores the blocks following c
in S`,`, sorted by their conditional frequencies. Each of these blocks has been
assigned a codeword from the set {ε, 0, 1, 00, 01, 10, 11, 000, 001, . . .}: the larger
is the conditional frequency of a block, the shorter is its codeword.

In order to achieve n′H1(S`,`) plus lower order terms, each super-block is
encoded as follows: the first block of the super-block is written uncompressed;
each remaining block c′ is encoded by its codeword T 1

c [c′], where c is the block
preceding c′ in the super-block.

Apart from the tables in (a), the encoding of S`,` comprises (b) the concate-
nation of the aforementioned encodings of its super-blocks, and (c) a suitable
encoding of the starting positions in (b) of the individual encodings of the super-
blocks and their blocks (this is necessary as the codewords are not prefix-free).

5 The term k lg σ accounts for the cost of writing explicitly the first k symbols of S,
which do not have any k-order context.

8

As for the space occupancy, we have that the tables in (a) requireO(σ2` lg n) =
o(n1/2) bits; the encoding in (b) requires at most H1(S`,`) bits plus O(lg σ`) =
O(lg n) bits per super-block and O(1) bits per block; the encoding in (c) re-
quires O(n lg lgn

lgσ n
) bits using a standard two-level solution with succinct dictionar-

ies [14]. Summing up, the space for this static scheme is n′H1(S`,`)+O(n lg lgn
lgσ n

) ≤
nHk(S) +O(n lg lgn

lgσ n
) bits by Lemma 5 (setting ` = m = M = 1

8 lgσ n).

Operation Access(i,m) identifies the pth block of S`,` as in Section 2.1 but
it now decompresses the whole super-block containing that block. This requires
O(lg n/ lg lg n) time. After that, the decoding of the next O(m/`) blocks adds
O(m/`) time to the latter cost.

Fully dynamic representation. We maintain a flexible partition S`,2` of S, where
super-blocks contains between b and 2b blocks of S`,2` (i.e., between b` and 4b`
symbols of S). We do not give here the implementation details that are of com-
mon use in dynamic data structures. For example, once a block (or a super-block)
becomes too large or too small, it is split or merged with the preceding block (or
super-block). Instead, we discuss how to maintain the compressed representation
for S`,2` in terms of the data structures (a)–(c) previously discussed.

As for (c), we adopt the dynamic binary vector in [15] using O(n lg lg n/ lgσ n)
bits, and supporting Rank, Select, Insert, and Delete in O(lg n/ lg lg n) time.

As for (a) and (b), observe that when any Replace, Insert or Delete of a symbol
is performed in S, we have to change at most 2 blocks of S`,2`. Consequently,
some conditional frequencies should be changed in the tables T 1

c in (a) but we
cannot afford soon the time cost of this change. Here is our solution in short.

Be lazy. Let us consider the snapshot of the tables T 1
c in (a) for a certain

instance of S`,2` during its lifetime. We use them anyway to encode the blocks
in (b) of the current instance, called S′`,2`, obtained after say r updates of S. This
potentially introduces a loss in space as we are using the outdated statistics of
S`,2` to encode also the blocks of S′`,2`. The result in [5, Th.4] shows that this

loss can be bounded by O(r lg n) bits.6 By choosing r = Θ(n lg σ lg lg n/ lg2 n),
this loss remains dominated by the redundancy of Theorem 2.

Use amortization and deamortize. By our choice of r, we have Θ(r lgn
lg lgn) =

Θ(n/`) credits after r update operations: they are enough to cover the cost
of updating the tables in (a) and re-encoding all the Θ(n/`) blocks (and their
super-blocks) in (b) and (c). We thus have a scheme supporting all the operations
in O(lgn

lg lgn) amortized time. From this point, the deamortization scheme follows

the same idea in [5], which consists in dividing updates into phases and spreading
the cost of the re-encoding within each phase. We refer to [5] for the details.

3 Dynamizing static Rank/Select succinct indexes

This section presents a dynamization result and an example of its application.
A Rank/Select succinct index for a static string is a data structure that supports

6 We measure the loss with respect to |S′
`,2`|H1(S′

`,2`) of the current partition.

9

Rank and Select on a string S but reads symbols from S solely through (constant-
time) probe operations. A Rank/Select succinct index for a dynamic string S also
supports Rank and Select on S, also only probes S, but is notified when S is
modified by a Replace operation. We show:

Theorem 3. Let I be a succinct index for a static string S[1..n] over the alpha-
bet [σ] that occupies at most f(n, σ) bits of space, where f is a convex function of
n. Further, suppose that I can be constructed in linear time using O(f(n, σ)) bits
of space. Then, I can be used to build a succinct index for a dynamic string S,
supporting Rank and Select with an additive overhead of O(lg n/ lg lg n) time per
operation and Replace on S in O(lg n/ lg lg n) amortized time. The resulting in-

dex requires O(n (lg σ+lg lgn) lg lgn
lgn) bits of additional space, plus O(f(n, σ)) bits

of temporary working space.

Choosing the Rank/Select index from [12, Theorem 4(a)] as I and Theorem 1
to store S, we obtain the following result via Theorem 3:

Corollary 1. A string S[1, n] over the alphabet Σ = [σ] can be stored in nHk(S)+
O(n(lg lg σ+(k lg σ lg lg n)/ lgσ n) bits for all k = o(lgσ n), so as to support Rank
and Select in O(lgn

lg lgn) time, Access(i,m) in O(1 + m
lgσ n

) time, and Replace in

O(lgn
lg lgn) amortized time.

3.1 Proof of Theorem 3

Two-level solution. We partition the string S into chunks of m = σ lg2 n symbols
each, and we use M = n/m to denote the number of these chunks (M = 1 if
σ = Ω(n/ lg2 n)). The first level maintains dynamically the cumulative number
of occurrences of each symbol in each chunk while the second level builds a static
instance of I on each chunk together with additional data structures to correct
its potentially wrong answers. The first level routes a Rank or Select query to
the appropriate chunk; the second level handles the query for that chunk.

First level. For each symbol c, we maintain an array Ac[1,M], where Ac[i] stores
the number of occurrences of symbol c in the ith chunk, for 1 ≤ i ≤ M . Every
time we replace a symbol c in the ith chunk with a new symbol c′, we increase
Ac′ [i] and decrease Ac[i], both by 1. We then construct an instance of the dy-
namic partial-sums data structure in [16] on each of these arrays. This data
structure answers prefix sum queries, predecessor queries on the prefix sums and
±1 updates on the arrays in O(lg n/ lg lg n) worst-case time. For each symbol c,
it is easy to see that these queries suffice to reduce Rank and Select on S to those
on a chunk. As the data structures use a linear number of words of memory, the
overall space usage for all Ac’s is O(Mσ lg n) = O(n/ lg n) bits overall.

Second level. The second level supports Rank, Select and Replace on each chunk
C (of size m). The key idea in our solution is to build a static index IC on C,
whose local operations are denoted by Static Rank and Static Select to distinguish

10

them from Rank and Select that we want to support dynamically. The index IC
is rebuilt from scratch as soon as Θ(m lg lg n/ lg n) updates occur in C: since
rebuilding takes O(m) time, the rebuilding phase costs O(lg n/ lg lg n) amortized
time per update. Note that while Static Rank and Static Select need to probe the
original content of C, Replace operations could have changed C meanwhile. We
show how to solve this problem in Appendix A.

Now, consider Rank and Select queries on the current content of C. They are
solved by first querying the static index IC with Static Rank and Static Select.
However, they may report incorrect answers since IC is built on the original
content of C. We give two solutions to correct these potentially incorrect answers,
depending on the alphabet size σ. The solution for small alphabets, namely, when
lg σ = O(lg n/ lg lg n), is presented in Appendix B. Below we discuss the solution
for large alphabets, namely, when lg σ = ω(lg n/ lg lg n) and so we can use O(n)
additional bits without increasing the space complexity in Theorem 3.

Operations for large alphabets. Here we implement the operations as follows.
Rank is supported by indexing two dynamic sequences A[1,m] and D[1,m]

that keep track of the modifications occurred in the chunk C. Initially, when
there are no updates, A = ⊥m and D = ⊥m for a special symbol ⊥ that denotes
no symbol change. An update that modifies the i-th position in C with symbol
c is recorded by setting A[i] = c and D[i] = C[i]: subsequent modifications of
the i-th position change only A[i] = c. Supporting Rank on A and D suffices
for correcting the (potentially) wrong results of Static Rank. Indeed, we have
Rank(c, i) = Static Rank(c, i) + RankA(c, i) − RankD(c, i). We observe that A
and D contain only O(m lg lg n/ lg n) = O(σ lg n lg lg n) occurrences of symbols
different from ⊥, before the rebuilding. This sparseness allows us to remain
within the space bound of Theorem 3 by using the solution of Navarro and
Nekrich [6] on A and D. Indeed, it requires mH0(A)+O(m+σ lg1+εm) = O(m)
bits for A, as m = σ lg2 n, and an analogous argument holds for D.

Select is supported by maintaining a dynamic ternary vector Tc for each
symbol c over the alphabet {⊥,+,−} as follows. Initially, we start with the
sequence Tc = ⊥nc , where nc is the number of occurrences of c in C. When
the j-th occurrence of c in the sequence is replaced by some other symbol, we
change the j-th occurrence of a symbol from {⊥,+} in Tc to a −. When a symbol
other than c at position i is replaced by a c, then first we count the number of
occurrences j of c before the position j, using a Rank operation, and then insert
a + after the j-th occurrence of a symbol from {⊥,+} in Tc. We use the index
in [15] for supporting SelectTc(⊥/+, i) and RankTc(⊥/+, j) in O(lg n/ lg lg n)
time. In this case the space usage is:

∑
c∈[σ]O(nc lg 3) = O(m) bits. Operation

Select(c, i) is then the following one:

1. Set j = SelectTc(⊥/+, i) and k = RankTc(+, j).
2. If Tc[j] = ⊥, return Static Select(c, j − k); else, return SelectA(c, k).

Finally, Replace is supported by changing the content of A, D and Tc’s, as
discussed above.

11

References

1. Ferragina, P., Venturini, R.: A simple storage scheme for strings achieving entropy
bounds. Theor. Comput. Sci. 372 (2007) 115–121

2. Sadakane, K., Grossi, R.: Squeezing succinct data structures into entropy bounds.
SODA, ACM Press (2006) 1230–1239

3. González, R., Navarro, G.: Compressed text indexes with fast locate. CPM. Volume
4580 of Lecture Notes in Computer Science., Springer (2007) 216–227

4. Patrascu, M., Viola, E.: Cell-probe lower bounds for succinct partial sums. In
Charikar, M., ed.: SODA, SIAM (2010) 117–122

5. Jansson, J., Sadakane, K., Sung, W.K.: CRAM: Compressed random access mem-
ory. ICALP (1). Volume 7391 of LNCS, Springer (2012) 510–521

6. Navarro, G., Nekrich, Y.: Optimal dynamic sequence representations. Proc. 24th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). (2013)

7. Fredman, M.L., Saks, M.E.: The cell probe complexity of dynamic data structures.
STOC. (1989) 345–354

8. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and in-
dexing labeled trees, with applications. J. ACM 57 (2009)

9. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52 (2005) 552–581
10. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications

to text indexing and string matching. SIAM J. Computing 35 (2005) 378–407
11. Barbay, J., He, M., Munro, J.I., Satti, S.R.: Succinct indexes for strings, binary

relations and multilabeled trees. ACM Transactions on Algorithms 7 (2011) 52
12. Grossi, R., Orlandi, A., Raman, R.: Optimal trade-offs for succinct string indexes.

ICALP (1). Volume 6198 of LNCS, Springer (2010) 678–689
13. Manzini, G.: An analysis of the Burrows-Wheeler transform. J. ACM 48 (2001)

407–430
14. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-

tions to encoding k-ary trees, prefix sums and multisets. ACM TALG 3 (2007)
15. Sadakane, K., Navarro, G.: Fully-functional succinct trees. SODA. (2010) 134–149
16. Pǎtraşcu, M., Demaine, E.D.: Logarithmic lower bounds in the cell-probe model.

SIAM J. Comput. 35 (2006) 932–963
17. Dietzfelbinger, M., Karlin, A.R., Mehlhorn, K., Meyer auf der Heide, F., Rohnert,

H., Tarjan, R.E.: Dynamic perfect hashing: Upper and lower bounds. SIAM J.
Comput. 23 (1994) 738–761

18. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51 (2004) 122–144
19. Pagh, R.: A new trade-off for deterministic dictionaries. 1851 (2000) 22–31
20. Brodnik, A., Carlsson, S., Demaine, E.D., Munro, J.I., Sedgewick, R.: Resizable

arrays in optimal time and space. WADS. LNCS 1663, Springer (1999) 37–48

12

APPENDIX

A Probing original symbols in O(1) time

The static index IC solves its queries by probing symbols of the original chunk C,
which may change due to updates. When Static Rank and Static Select probe a
non-constant number of symbols of C to answer a query, we want to avoid to
increase the Rank and Select cost stated in Theorem 3. This forces us to be
conservative and simulate any probe in constant time by maintaining a mapping
from the modified positions in C to their original symbols. A probe is performed
by returning the original symbol whenever the probed position has been modified
or by accessing the current version of C otherwise. Let U be the set of modified
positions in the chunk (i.e., U is a subset of [m]), where each position in U is
associated with its original symbol c. We want to solve the dictionary problem
on the set U , namely, we want to support the following two operations:

– Lookup(i) which returns the symbol c associated with position i whenever
i ∈ U , ⊥ otherwise;

– Add(i, c) which adds the position i to U associated with symbol c.

Unfortunately, known data structures solving this problem are unsatisfactory
in our setting: dynamic perfect hashing schemes (e.g., Dynamic FKS [17] or
Cuckoo Hashing [18]) exhibit constant time lookup but require randomization
for updates, while deterministic dynamic dictionaries (see e.g., [19]) achieve only
ω(1) time for lookups and polylogarithmic time for updates. Hence we resort to
a two-level index that supports Lookup in O(1) time, and Add in O(lg n/ lg lg n)
worst-case time by requiring O(|U |(lg σ + lg lg n) + m lgm · lg lg n/ lg n) bits of

space. Thus, in our scenario the overall space occupancy is O(m (lg σ+lg lgn) lg lgn
lgn)

bits, since |U | = O(m lg lg n/ lg n) and lgm = O(lg σ + lg lg n). The details are
as follows.

Consider the characteristic vector V [1,m] of U , namely, V [i] is equal to 1 if
and only if the position i belongs to U . We split the vector V intoΘ(m lg lg n/ lg n)
blocks of size lgn

2 lg lgn each. The description of each block is divided in two parts:
the header, which stores the offset of each 1 within the block, and the content,
which stores the original symbol associated with each 1 in the block. Both offsets
and symbols of a block are stored by keeping their relative order. Headers and
contents are stored in two collections of resizable arrays [20]: H1, H2, . . . ,H lgn

2 lg lgn

and C1, C2, . . . , C lgn
2 lg lgn

. The two arrays Hh and Ch store, respectively, headers

and contents of blocks having exactly h modified positions and, thus, they have
entries of size O(h lg lg n) bits and O(h lg σ) bits respectively. For each block, we
also store two O(lgm)-bit pointers that point to its header and content in their
corresponding arrays.

The space occupancy of the scheme is O(|U |(lg σ + lg lg n)) bits for storing
headers and contents, plus O(lgm) bits for each of the O(m lg lgn

lgn) pointers.

13

Lookup(i). Given the header of i’s block, we use a lookup on a precomputed
table which returns the rank r of i within its block if i ∈ U , or ⊥ otherwise.
In the former case, we access the rth symbol from the position pointed by i’s
block, whereas in the latter case, we simply probe the corresponding symbol from
the original chunk as the position i is unmodified. Observe that the required
precomputed table has sublinear size because we have only 21/2 lgn = O(

√
n)

possible headers.

Add(i, c). We access the header and the content of i’s block which are modified
by inserting the offset of i in the header, and symbol c in the content. If the
block has now h modified positions, then the header and content of the block
are moved from arrays Hh−1 and Ch−1 to two newly allocated entries in the
arrays Hh and Ch. This operation leaves 2 unused entries in Hh−1 and Ch−1.
We move into these positions the last entries of corresponding arrays (in order to
avoid fragmentation), and shrink the arrays Hh−1 and Ch−1, if necessary. Thus,
Add operation moves at most 2h = O(lgn

lg lgn) header and content values, and

modifies the pointers of at most two blocks. Resizable arrays [20] guarantee that
the allocation and deallocation of h entries costs O(h) amortized time.

B Rank and Select operations for lg σ = O(lgn/ lg lgn) in
Theorem 3

For each symbol c, we define the sets ADDc and DELc that keep track of the
positions in C which are, respectively, currently equal to the symbol c but orig-
inally set to c′ 6= c, and currently equal to the symbol c′ 6= c but originally set
to c. Formally,

ADDc = {i | i ∈ [m] : C[i] = c and C[i] was originally set to c′ 6= c}, and

DELc = {i | i ∈ [m] : C[i] = c′ 6= c and C[i] was originally set to c}.

For each symbol c, we maintain an augmented balanced binary tree Tc whose
leaves corresponds to the positions in ADDc ∪ DELc. Node u of Tc stores the
following values:

1. the value S(u) = Static Rank(c, `) of the largest position ` in u’s subtree;
2. the number A(u) of positions in u’s subtree that belong to ADDc;
3. the number D(u) of positions in u’s subtree that belong to DELc.

Rank(c, i) is solved as follows. If i ∈ ADDc∪DELc, then Rank(c, i) is computed
by traversing the path from the root to the leaf corresponding to i. Indeed, we
keep two counters Ai and Di. Every time the root-to-leaf path moves to the
right child of a node u, we add A(v) to A and D(v) to D, where v is the left
child of u. It follows that Rank(c, i) = Static Rank(c, i) − Ai − Di. Instead, if
i /∈ ADDc ∪ DELc, we have Rank(c, i) = Static Rank(c, i) − Aj − Dj where j is
the predecessor of i in ADDc ∪ DELc.

14

Select(c, i) is solved by identifying the largest position j in ADDc ∪ DELc
such that Rank(c, j) ≤ i. There are two possible cases. If Rank(c, j) is exactly
i and j ∈ ADDc, we report j as the result of the query. Otherwise, we report
Static Select(c, i − k + k′), where k and k′ are the number of positions at most
j, respectively, in ADDc and in DELc.

Observe that all the operations requires O(lg n/ lg lg n) time. Indeed, they
are solved by traversing a root-to-a-leaf path in a tree whose height is lgm =
O(lg n/ lg lg n) by our hypothesis on the alphabet size. The space required by
these binary trees is O(lgm) bits for each modified positions. Since their number
is O(m lg lg n/ lg n), the space occupancy is within the one of Theorem 3.

15

