<p>This MATLAB toolbox
provides codes for computing practical measures of integrated information
proposed in Oizumi et al., 2016, PLoS Comp Biol and Oizumi et al., 2016, PNAS
and codes for efficiently searching the Minimum Information Partition (MIP) proposed
in Hidaka & Oizumi, 2018, PLoS ONE and Kitazono et al., 2018, Entropy
(Queyranne’s algorithm). Please see Readme.docx for more details. </p><p>The codes for
Queyranne’s algorithm were written by Shohei Hidaka at JAIST (Japan
Advanced Institute of Science and Technology).<br></p><p><br></p>
<p> </p>
<p>References</p>
<p>[1] Oizumi, M.,
Amari, S, Yanagawa, T., Fujii, N., & Tsuchiya, N. (2016). Measuring
integrated information from the decoding perspective. PLoS Comput Biol, 12(1),
e1004654. </p>
<p> </p>
<p>[2] Oizumi, M.,
Tsuchiya, N., & Amari, S. (2016). Unified framework for information
integration based on information geometry. Proceedings of the National Academy
of Sciences, 113(51), 14817-14822. </p>
<p> </p>
<p>[3] Hidaka, S.,
& Oizumi, M. (2018). Fast and exact search for the partition with minimal
information loss. PLoS one, 13(9), e0201126.</p>
<p> </p>
<p>[4] Kitazono, J.,
Kanai, R., Oizumi, M. (2018). Efficient algorithms for searching the minimum
information partition in integrated information theory. Entropy, 20, 173.</p>