Dye-sensitized solar cells (DSSCs) are an alternative low-cost solution to the renewable energy problem due to the use of TiO2 as a semiconductor. Electricity generation is achieved through a series of chemical reactions designed to transport excited electrons from photosensitive dyes as a means of creating a circuit. Current modelling approach is based on the diffusion of the density of electrons in the conduction band of a DSSC’s nanoporous semiconductor. In this paper, we review current models for DSSCs based on diffusion equations combining the generation and the loss of the electron density as a result of dye excitation due to sunlight and electron recombination, respectively. Further, we consider another model based on fractional diffusion equation, taking into consideration random porous network of the semiconductor TiO2.
History
Source title
Progress in Industrial Mathematics at ECMI 2021
Pagination
257-265
Series details
Mathematics in Industry-39
Editors
Ehrhardt, M. & Günther. M,
Publisher
Springer Nature
Place published
Cham, Switzerland
Language
en, English
College/Research Centre
College of Engineering, Science and Environment
School
School of Information and Physical Sciences
Rights statement
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-031-11818-0_34