figshare
Browse
1/1
8 files

Loss of the novel Vcp (valosin containing protein) interactor Washc4 interferes with autophagy-mediated proteostasis in striated muscle and leads to myopathy in vivo

Version 2 2020-09-22, 22:40
Version 1 2018-08-16, 09:08
dataset
posted on 2020-09-22, 22:40 authored by Monika Kustermann, Linda Manta, Christoph Paone, Jochen Kustermann, Ludwig Lausser, Cora Wiesner, Ludwig Eichinger, Christoph S. Clemen, Rolf Schröder, Hans A. Kestler, Marco Sandri, Wolfgang Rottbauer, Steffen Just

VCP/p97 (valosin containing protein) is a key regulator of cellular proteostasis. It orchestrates protein turnover and quality control in vivo, processes fundamental for proper cell function. In humans, mutations in VCP lead to severe myo- and neuro-degenerative disorders such as inclusion body myopathy with Paget disease of the bone and frontotemporal dementia (IBMPFD), amyotrophic lateral sclerosis (ALS) or and hereditary spastic paraplegia (HSP). We analyzed here the in vivo role of Vcp and its novel interactor Washc4/Swip (WASH complex subunit 4) in the vertebrate model zebrafish (Danio rerio). We found that targeted inactivation of either Vcp or Washc4, led to progressive impairment of cardiac and skeletal muscle function, structure and cytoarchitecture without interfering with the differentiation of both organ systems. Notably, loss of Vcp resulted in compromised protein degradation via the proteasome and the macroautophagy/autophagy machinery, whereas Washc4 deficiency did not affect the function of the ubiquitin-proteasome system (UPS) but caused ER stress and interfered with autophagy function in vivo. In summary, our findings provide novel insights into the in vivo functions of Vcp and its novel interactor Washc4 and their particular and distinct roles during proteostasis in striated muscle cells.

Funding

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) [RO2173/4-1 (WR), RO2173/4-2 (WR), JU2859/1–2 (SJ)]; Ministerium Wissenschaft, Forschung und Kunst Baden-Württemberg (MWK) [Juniorprofessurenprogramm 2013]; German Federal Ministry of Education and Research (BMBF) [e:Med-SYMBOL-HF grant #01ZX1407A];

History