figshare
Browse

File(s) not publicly available

Reason: Soon be added whole book after edition further

Mathematics (Bhutan Certificate of Secondary Examination)

book
posted on 2022-01-27, 05:58 authored by Kinley .Kinley .
The first question that comes in my mind is “What is mathematics?” It might seem strange, probably spent several years being learn and taught mathematics. However, for all the times schools devoted to the teaching of mathematics very little, if any, is spent trying to convey just what the subject is about. Instead, the focus is on learning and applying various procedures to solve mathematics problems that is a bit like explaining soccer by saying it’s a series of maneuvers executed to get the ball into the goal. Both accurately describe various key features. However, they miss what’s and the why of the big picture. If all we want to learn new mathematical techniques to apply in different circumstances, then we can probably get by without knowing what mathematics is really about. One thing I realize is that a lot of school mathematics dates back to medieval times, 17th century at the very latest. Virtually nothing from the last 300 years has found its way into the classroom. Yet the world we live in has changed dramatically in the last ten years, let alone the last 300 years. Most of the changes in mathematics over the centuries were just expansion. But in the 19th century, there was a major change in the nature of mathematics. First, it became much more abstract. Second, the primary focus shifted from calculation and following procedures to one of analyzing relationships. The changing emphasis wasn’t arbitrary, it came about through the increasing complexity of what became the world we are familiar with. Procedures and computation did not go away which are still important, but in today’s world, they are not enough. We need understanding. In our education system, the change of emphasis in mathematics usually comes when the students transition from high school to university. However, the basics of mathematics begins from high schools and it lacks to emphasize the mathematics to real life situations. Among many topics taught in mathematics, I realize that the calculus is one of the most important and prominent topics that the mathematics teachers can relate with real world situations−experimentally real, visually and graphically. Calculus is one of the greatest achievements of human intellect and demonstrates the power to illuminate the most fundamental problems in mathematics, physical sciences, biological sciences, and engineering. Calculus can reduce complicated problems to simple rules and procedures by using symbols and notations. vi However, use of symbols and notations might lead to losing the original pictures of the problems. Despite its importance, the teaching of introductory calculus always emphasizes manipulation of algebraic notations and rote learning. Students memorize algebraic procedural steps rather develop conceptual understanding. Most students learn the how instead of the why of calculus due to extensive use of algebraic symbols and notations. The real meanings of symbols and notations learned in the classroom are not interpreted explicitly in the context of real world situations. To address this issue, I have designed a contextual and graphing activities based on the learning cycle approach to enhance students’ conceptual understanding of the fundamentals of calculus and the relationship between differentiation and integration. Experimentally real activities for students were developed to convey the concepts of the fundamentals of calculus realistically and then represented in the form of graphs. The activities given in this book were thoroughly researched, implemented and the results were also successful. The activities are very simple and used locally available materials in the Bhutanese context. However, the result of the research study is not mentioned in this book, only discussions and impact of the research study is presented at the end. This is book can be exclusively used by the mathematics teachers teaching introductory calculus in higher secondary schools. I hope that the mathematics teachers would make best use of this book to help students understand calculus better. If readers come across any mistakes, your suggestions will be gracefully acknowledged for the further improvement of the book.

History