figshare
Browse
Figure_1.tif (1.26 MB)

Sodium channel properties in wt and dystrophic neonatal cardiomyocytes.

Download (0 kB)
figure
posted on 2013-02-20, 18:09 authored by Xaver Koenig, Sandra Dysek, Stefanie Kimbacher, Agnes K. Mike, Rene Cervenka, Peter Lukacs, Katrin Nagl, Xuan B. Dang, Hannes Todt, Reginald E. Bittner, Karlheinz Hilber

A. Original current traces of a typical wt, mdx, and mdx-utr cardiomyocyte, elicited by depolarising voltage-steps. B. Current-voltage relationships derived from a series of experiments as shown in A. The Inset (bar graph) shows a comparison of the maximum current densities between wt and dystrophic cardiomyocytes. C. Comparison of the current decay kinetics between wt and dystrophic cardiomyocytes at different membrane voltages. Decay half-times represent the time periods between the current peak and the time point at which the current had decayed to 50%. * indicates that ANOVA revealed a significant difference (p<0.05) between the respective parameters of the three tested groups. Tukey's Post Hoc test for comparison between two groups revealed significant differences (p<0.05) between mdx-utr and wt, and between mdx-utr and mdx. D. Voltage-dependencies of activation and steady-state inactivation in wt and dystrophic cardiomyocytes. E. Recovery from inactivation in wt and dystrophic cardiomyocytes. Data were fit with a single exponential function. The pulse protocols are shown as insets in the respective graphs. Data points represent means ± SEM. Detailed statistics and n-values are given in Table 1.

History

Usage metrics

    PLOS ONE

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC