figshare
Browse
Figure_5.tif (3.57 MB)

Overview over different assay development strategies.

Download (0 kB)
figure
posted on 2011-03-22, 02:43 authored by Lena Poulsen, Martin Jensen Søe, Lisbeth Birk Møller, Martin Dufva

A) After choosing the method for calling genotypes (Figure 2) or for genotyping loci, placed in genomic regions with wide to narrow ranges in G+C content, the choice to run the assay at a single or at many assay stringencies is made. Based on the above selections “Input criteria” the parameters (Opt. Param.) that need to be optimized/flexible are shown below with the achieved success rate (SR) (percentage of mutations successfully genotyped). The parameters that must be optimized are probe length/Tm, spacer length (position of probe relative to array surface) and alternative combinations of wildtype and mutant probe in probe-pairs (Alt probes). The success rate obtained in this study (genotyping of PAH mutations) is valid for the wide range in G+C content. The results from a narrow range in G+C content are from genotyping mutations in the HBB gene (reference). B) The steps in bottom-up (left) and top-down (right) assay strategies are listed. The bottom-up approach is an iterative process with many rounds of probe design, testing and the redesigning of probes. In contrast the top-down approach only utilizes one optimization experiment including all parameters needed for a functional assay.

History

Usage metrics

    PLOS ONE

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC