figshare
Browse
erl468153f5_online.jpg (263.87 kB)

North–south ((a), (c)) and east–west ((b), (d)) velocities (ma−1) estimated from GPS measurements collected during the drainage of Lake Half Moon ((a), (b)) and Lake Ponting ((c), (d))

Download (0 kB)
figure
posted on 2013-07-16, 00:00 authored by Marco Tedesco, Ian C Willis, Matthew J Hoffman, Alison F Banwell, Patrick Alexander, Neil S Arnold

Figure 5. North–south ((a), (c)) and east–west ((b), (d)) velocities (ma−1) estimated from GPS measurements collected during the drainage of Lake Half Moon ((a), (b)) and Lake Ponting ((c), (d)). Note that scales on the y-axis are different for the four panels.

Abstract

Supraglacial lake drainage on the Greenland ice sheet opens surface-to-bed connections, reduces basal friction, and temporarily increases ice flow velocities by up to an order of magnitude. Existing field-based observations of lake drainages and their impact on ice dynamics are limited, and focus on one specific draining mechanism. Here, we report and analyse global positioning system measurements of ice velocity and elevation made at five locations surrounding two lakes that drained by different mechanisms and produced different dynamic responses. For the lake that drained slowly (>24 h) by overtopping its basin, delivering water via a channel to a pre-existing moulin, speedup and uplift were less than half those associated with a lake that drained rapidly (~2 h) through hydrofracturing and the creation of new moulins in the lake bottom. Our results suggest that the mode and associated rate of lake drainage govern the impact on ice dynamics.

History

Usage metrics

    Environmental Research Letters

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC