Experimental setup for the investigation of atoms by ion TOF spectroscopy in an FEL focus of a spherical narrow-bandwidth multilayer mirror

<p><strong>Figure 1.</strong> Experimental setup for the investigation of atoms by ion TOF spectroscopy in an FEL focus of a spherical narrow-bandwidth multilayer mirror.</p> <p><strong>Abstract</strong></p> <p>At the free-electron laser FLASH, multiple ionization of neon atoms was quantitatively investigated at photon energies of 93.0 and 90.5 eV. For ion charge states up to 6+, we compare the respective absolute photoionization yields with results from a minimal model and an elaborate description including standard sequential and direct photoionization channels. Both approaches are based on rate equations and take into account a Gaussian spatial intensity distribution of the laser beam. From the comparison we conclude that photoionization up to a charge of 5+ can be described by the minimal model which we interpret as sequential photoionization assisted by electron shake-up processes. For higher charges, the experimental ionization yields systematically exceed the elaborate rate-based prediction.</p>