figshare
Browse
jpb465580f6_online.jpg (116.97 kB)

Dynamics of the AXE at the C 1s→ X transition for an ensemble of pre-aligned CO molecular with 〈cos 2ζ〉 = 0.64: XFEL pump intensity (a) and AXE intensity (b) in W cm−2, population of the intermediate core-ionized state ∑ρii/N (c), and normalized AXE intensity (d) in the frame of the retarded time t' = tz/c (relative to the maximum of the pump pulse) and interaction length z

Download (0 kB)
figure
posted on 2013-08-13, 00:00 authored by Victor Kimberg, Song Bin Zhang, Nina Rohringer

Figure 6. Dynamics of the AXE at the C 1s→ X transition for an ensemble of pre-aligned CO molecular with 〈cos 2ζ〉 = 0.64: XFEL pump intensity (a) and AXE intensity (b) in W cm−2, population of the intermediate core-ionized state ∑ρii/N (c), and normalized AXE intensity (d) in the frame of the retarded time t' = tz/c (relative to the maximum of the pump pulse) and interaction length z. The XFEL pump pulse parameters are the same as in figure 5.

Abstract

We theoretically demonstrate the feasibility of x-ray lasing in the CO molecule by the core ionization of the C K- and O K-shell by x-ray free-electron laser sources. Our numerical simulations are based on the solution of generalized Maxwell–Bloch equations, accounting for the electronic and nuclear degrees of freedom. The amplified x-ray emission pulses have an extremely narrow linewidth of about 0.1 eV and a pulse duration shorter than 30 fs. We compare x-ray lasing transitions to the three lowest electronic states of singly ionized CO. The dependence of the lasing efficiency on the spectral width of the x-ray fluorescence band, value and orientation of the electronic transition dipole moment, lifetime of the core-excited state and the duration of the pump pulse is analysed. Using a pre-aligned molecular ensemble substantially increases the amplified emission. Moreover, by controlling the molecular alignment and thereby the alignment of the transition dipole moment polarization, the control of the emitted x-ray radiation is achievable. Preparing the initial vibrational quantum state, the x-ray emission frequency can be tuned within the fluorescence band. The present scheme is applicable to other diatomic systems, thereby extending the spectral range of coherent x-ray radiation sources based on stimulated x-ray emission on bound transitions.

History