AKT pathway model.

2014-08-04T03:12:40Z (GMT) by Yohei Murakami
<p>(A) Structure of the AKT pathway model. The input signal is insulin. The output signal is pAKT. Solid arrows represent mass flows. Solid arrows directional to a lined circle represent degradation processes. Solid arrows with black circles represent association/dissociation processes. Dotted arrows represent enhancement of the processes. (B) Experimental data (red points) and simulated trajectory (green trajectory) of pAKT in response to the step stimulation of 1 nM insulin. (C), (D), (E) Reproduction of the experimental data. Simulations were run with the posterior parameter ensemble in response to the step stimulation of 1 nM insulin. (C) Annealing schedule: (<i>ε<sub>0</sub>, ε<sub>1</sub>, ε<sub>2</sub>, ε<sub>3</sub>, ε<sub>4</sub>, ε<sub>5</sub>, ε<sub>6</sub>, ε<sub>7</sub>, ε<sub>8</sub>, ε<sub>9</sub>, ε<sub>10</sub>, ε<sub>11</sub>, ε<sub>12</sub>, ε<sub>13</sub>, ε<sub>14</sub></i>) = (∞, 1.5, 1.0, 0.75, 0.5, 0.25, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02). (D) Annealing schedule: (<i>ε<sub>0</sub>, ε<sub>1</sub>, ε<sub>2</sub>, ε<sub>3</sub>, ε<sub>4</sub>, ε<sub>5</sub>, ε<sub>6</sub>, ε<sub>7</sub>, ε<sub>8</sub>, ε<sub>9</sub>, ε<sub>10</sub>, ε<sub>11</sub>, ε<sub>12</sub>, ε<sub>13</sub>, ε<sub>14</sub>, ε<sub>15</sub></i>) = (∞, 1.5, 1.0, 0.75, 0.5, 0.25, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01). (E) Annealing schedule: (<i>ε<sub>0</sub>, ε<sub>1</sub>, ε<sub>2</sub>, ε<sub>3</sub>, ε<sub>4</sub>, ε<sub>5</sub>, ε<sub>6</sub>, ε<sub>7</sub>, ε<sub>8</sub>, ε<sub>9</sub>, ε<sub>10</sub>, ε<sub>11</sub></i>) = (∞, 1.5, 1.0, 0.75, 0.5, 0.25, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05). Blue-colored area is the probability density consists of the simulated trajectories. Red points are the experimental data.</p>