Winery vermicomposts to control the leaching of diuron, imidacloprid and their metabolites: Role of dissolved organic carbon content

<div><p>Soil organic amendment addition is an effective practice in Mediterranean areas due to its associated high agricultural benefits and its potential to reduce the pesticide impact on water resources. However, their metabolites have received scarce attention, even when they may pose more risk than their parent compounds. Two winery vermicomposts obtained from spent grape marc (V1) and the mixture vine shoot-biosolid vinasses (V2) have been investigated as low cost organic amendments to minimize the leaching of diuron, imidacloprid and their metabolites in columns packed with a sandy loam (S1) and a silty-clay loam soil (S2) under steady state flow conditions. In the unamended soil columns, leached amounts of diuron were 75% and 53% in S1 and S2, respectively. Its metabolites (3-(3,4-dichlorophenyl)-1-methylurea, DPMU; and 3,4-dichlorophenylurea, DPU) percolated less than 35% of the total applied amount. The amount of the metabolite 3,4-dichloroaniline (DCA) was 2% and 30% for S1 and S2, respectively. Leaching of imidacloprid was 79% and 96% for S1 and S2, respectively, while its metabolite 6-chloronicotinic acid (CNA) was entirely leached. In the vermicompost-amended columns, the leaching of diuron was reduced 2 to 3-fold. DPMU and DPU were also significantly reduced (more than 6-fold). DCA did not appear in any of the leachates of the amended soil columns. Imidacloprid leaching was reduced 1 to 2-folds in the amended columns. The amendments did not affect the transport of CNA. The dissolved organic carbon (DOC) from the vermicomposts did not enhance pesticide transport throughout the soil in any case. This qualitative study presents these vermicomposts as an effective potential low-cost tool in reducing pesticide and metabolite leaching. The next step would be to test them under more realistic conditions.</p></div>