figshare
Browse
391137.pdf (12.93 MB)

Variable speed operation of wind turbines

Download (12.93 MB)
thesis
posted on 2010-04-22, 09:53 authored by David Goodfellow
This work describes a control system in which a cycloconverter is connected between the secondary windings of a three phase induction machine and the a. c. mains supply to give variable speed sub- and super –synchronously. In order to control the system smoothly in an asynchronous mode a secondary emf signal generator has been designed, which enables the cycloconverter to operate in synchronism with the emf induced in the secondary windings of the machine. A computer programme has been written which calculates the required firing angles for the cycloconverter to produce secondary current in phase with the secondary emf in the machine. An electronic system has been built which ensures that these firing angles are used by the cycloconverter during actual operation. A cycloconverter has been built, using an effective six phases of mains supply, and has been successfully operated over a range of 20% about synchronous speed in both generating and motoring modes. Results show the ability of the cycloconverter to drive the machine up from standstill as a motor to just below 20% subsynchronous speed. An on-line computer simulation of a wind turbine has been developed which enables an assessment of variable speed generation applied to wind turbines to be achieved. This simulation, in connection with a d. c. machine and thyristor controller, can be used to drive the shaft of the induction machine and assess operation of the cycloconverter control scheme under actual wind turbine operating conditions.

History

Supervisor(s)

Smith, G. A.; Gardner, G. E.

Date of award

1986-10-01

Awarding institution

University of Leicester

Qualification level

  • Doctoral

Qualification name

  • PhD

Language

en

Usage metrics

    University of Leicester Theses

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC