Unidirectional Doubly Enhanced MoS2 Emission via Photonic Fano Resonances

Atomically thin transition metal dichalcogenides like MoS2 monolayers exhibit unique luminescent properties. However, weak quantum yield and low light absorption hinder their practical applications in two-dimensional light emitting devices. Here, we report 1300 times enhancement in photoluminescence emission from a MoS2 monolayer via simultaneous Fano resonances in a dielectric photonic crystal. The spatially extended double Fano resonance scheme allows resonant enhancement of both the MoS2 absorption and emission. We also achieve unidirectional emission within a narrow divergence angle of 5° by engineering the Fano resonance angular dispersion. Our approach provides a new platform for efficient light sources with high directionality based on emerging two-dimensional materials.