figshare
Browse
bc500020g_si_001.pdf (342.69 kB)

Tumor-Homing Glycol Chitosan-Based Optical/PET Dual Imaging Nanoprobe for Cancer Diagnosis

Download (342.69 kB)
journal contribution
posted on 2015-12-17, 01:05 authored by Sangmin Lee, Sun-Woong Kang, Ju Hee Ryu, Jin Hee Na, Dong-Eun Lee, Seung Jin Han, Choong Mo Kang, Yearn Seong Choe, Kyo Chul Lee, James F. Leary, Kuiwon Choi, Kyung-Han Lee, Kwangmeyung Kim
Imaging techniques including computed tomography, magnetic resonance imaging, and positron emission tomography (PET) offer many potential benefits to diagnosis and treatment of cancers. Each method has its own strong and weak points. Therefore, multimodal imaging techniques have been highlighted as an alternative method for overcoming the limitations of each respective imaging method. In this study, we fabricated PET/optical activatable imaging probe based on glycol chitosan nanoparticles (CNPs) for multimodal imaging. To prepare the dual PET/optical probes based on CNPs, both 64Cu radiolabeled DOTA complex and activatable matrix metalloproteinase (MMP)-sensitive peptide were chemically conjugated onto azide-functionalized CNPs via bio-orthogonal click chemistry, which was a reaction between azide group and dibenzyl cyclooctyne. The PET/optical activatable imaging probes were visualized by PET and optical imaging system. Biodistribution of probes and activity of MMP were successfully measured in tumor-bearing mice.

History