Our current understanding of the taxonomic and phylogenetic diversity of cellular organisms, especially the bacteria and archaea, is mostly based upon studies of sequences of the small- subunit rRNAs (ssu-rRNAs). To address the limitation of ssu-rRNA as a phylogenetic marker, such as copy number variation among organisms and complications introduced by horizontal gene transfer, convergent evolution, or evolution rate variations, we have identified protein- coding gene families as alternative Phylogenetic and Phylogenetic Ecology markers (PhyEco). Current nucleotide sequence similarity based Operational Taxonomic Unit (OTU) classification methods are not readily applicable to amino acid sequences of PhyEco markers. We report here the development of TreeOTU, a phylogenetic tree structure based OTU classification method that takes into account of differences in rates of evolution between taxa and between genes. OTU sets built by TreeOTU are more faithful to phylogenetic tree structures than sequence clustering (non phylogenetic) methods for ssu-rRNAs. OTUs built from phylogenetic trees of protein coding PhyEco markers are comparable to our current taxonomic classification at different levels. With the included OTU comparing tools, the TreeOTU is robust in phylogenetic referencing with different phylogenetic markers and trees.

The TreeOTU package includes OTU classification, comparison and tree rooting scripts, as well as the alignments, trees and NCBI/IMG taxonomic classification information related to this research. The contents in he package are described in the file README.txt.





CC BY 4.0