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Abstract

Quantitative mechanical analyses of human movement require the time histories of the angles

which specify body configuration and orientation. When these angles are obtained from a filmed

performance they may be used to evaluate the accuracy of a simulation model. This paper presents

a method of determining orientation angles and their rates of change from film data. The stages

used comprise the synchronisation of data obtained from two camera views, the determination of

three-dimensional coordinates of joint centres, the calculation of an angle from a sequence of sine

and cosine values and the curve fitting of angles using quintic splines. For each stage, other possible

approaches are discussed. Original procedures are presented for obtaining individual error estimates

of both the film data and the calculated angles to permit the automatic fitting of quintic splines

for interpolation and differentiation and for deriving the time history of an angle as a continuous

function from a sequence of sine and cosine values. The method is applied to a forward somersault

with 1 1

2
twists and the average error estimate of 17 orientation angles is obtained as 2.1 degrees.

INTRODUCTION

A quantitative three-dimensional mechanical analysis of human movement requires the time histories of
the angles which specify body configuration and orientation. In the case of aerial movement the rotational
motion is governed by the conservation of angular momentum equation and the first derivatives of angles
are needed. This paper presents a method of determining these angles and their rates of change from
film data and discusses other possible approaches.

For simple planar analyses of movement, angles may be determined by the use of a single cine-
camera whose optical axis is normal to the plane of movement. For general three-dimensional body
configurations, several cameras are needed, Noss (1967) stated that the angle between two lines may be
determined as the average of the apparent angles given by three cameras with orthogonal optical axes.
Spray (1973) and Putnam (1979) gave examples showing that the formula of Noss was incorrect. Walton
(1981) observed that ’the expressions for which Noss was searching do exist, but they are more complex
than a simple average’.

In fact, it is not possible to calculate the magnitude of an angle from the magnitudes of three
projections. This can be shown by the following example. For simplicity consider the case in which the
three cameras are situated at infinity on three orthogonal coordinate axes so that the apparent angles
are the same as the orthogonal projections on the three coordinate planes. The four points O(0, 0, 0),
A(1, 1, 1

2
), B(1, 1, 1) and C(1, 1, 2) define angles BOA and BOC (Fig. 1). These angles have equal

projections on each of the three coordinate planes but are not equal to each other. Thus, a knowledge of
the magnitudes of three projections of an angle is insufficient to determine the magnitude of the angle.

This indeterminacy arises because the expression for the angle between two lines involves four un-
knowns, namely two direction cosines for each line, whereas the magnitudes of three projections represents
only three equations.

If the directions of the two lines are known, then it is a simple matter to calculate the angle between
them. However, the description of the orientation of a body segment requires not only a means of
calculating angles but also a system of reference frames relative to which orientation angles are defined.



Figure 1: The projections B1OA1, B2OA2, B3OB3 of angle BOA are equal to the projections B1OC1,
B2OC2, B3OB3 of angle BOC whereas angles BOA and BOC are not equal.

METHOD

The various stages of the method are presented in a logical sequence. The system of orientation angles is
defined and a technique is presented for determining the angles from the three-dimensional coordinates of
body joint centres. The adoption of a quintic spline curve fitting technique for determining interpolated
values and rates of change is discussed and this leads into the design of the film digitisation procedure.

External orientation angles

The whole body orientation in space, or external orientation. is defined as the orientation of a frame
of reference f which rotates with the body, relative to a non-rotating frame of reference i. The frame
of reference f is usually chosen to be fixed in one segment of the body (e.g. Ramey and Yang, 1981)
but may be defined more generally using a number of segments (Yeadon, 1984). Frame f comprises a
right-handed triad (f1, f2, f3) of mutually orthogonal unit vectors. Frame i comprises the triad (i1, i2, i3).
The orientation of frame f relative to frame i is given by the angles φ, θ and ψ which are defined here
in the following way.

Figure 2: The angles φ, θ and ψ, which correspond to somersault, tilt and twist, define the orientations
of the body axes f1, f2, f3 relative to the non-rotating axes i1, i2, i3.

If frame f is initially aligned with frame i then successive rotations through φ about f1, θ about
f2 and ψ about f3 bring frame f into its final orientation. For aerial movement the angles φ, θ and ψ



correspond to somersault, tilt and twist (Fig. 2). This choice of angles was adopted by Passerello and
Huston (1971) and Van Gheluwe (1981), but there are a number of other systems which may be used
(Goldstein, 1950).

If the directions of the vectors i1, i2, i3, f1, f2, f3 are known then the angles φ, θ, ψ may be determined
as follows.

Let Sfi be the matrix which transforms the f–coordinates of a free vector into i–coordinates, i.e.,
Sfi[v]f = [v]i where [v]f and [v]i are the column vector representations of the vector v in frames f and
i. Frame f will be brought into alignment with frame i by successive rotations through −ψ about f3, −θ
about f2 and −φ about f1 . Let R3(−ψ), R2(−θ) and R1(−φ) be the rotation matrices corresponding to
the successive rotations. The columns of these rotation matrices are merely the new coordinates of the
previous directions of the unit vectors f1, f2 and f3.

Thus:

R1(−φ) =





1 0 0
0 cφ −sφ
0 sφ cφ





R2(−θ) =





cθ 0 sθ
0 1 0

−sθ 0 cθ





R3(−ψ) =





cψ −sψ 0
sψ cψ 0
0 0 1





where c denotes cosine and s denotes sine.
Similarly, the columns of the matrix Sfi are the components in frame i of the unit vectors f1, f2, f3.
Thus:

Sfi =





F1(1) F2(1) F3(1)
F1(2) F2(2) F3(2)
F1(3) F3(2) F3(3)





where Fk(j) denotes the jth component of (f)k in frame i.
Sfi may also be evaluated as:

Sfi = R1(−φ) ·R2(−θ) ·R3(−ψ).

Thus:

Sfi =





cθcψ −cθsψ sθ
cφsψ + sθsθcψ cθcψ − sφsθsψ −sφcθ
sφsψ − cφsθcψ sφcψ + cφsθsψ cφcθ



 .

Comparing corresponding elements in the two expressions for Sfi permits the calculation of the sine
and cosine of each orientation angle as:

sθ = F3(1)

cθ = (1− s2θ)
1

2

sφ = −F3(2)/cθ
cφ = F3(3)/cθ

sψ = −F2(1)/cθ
cψ = F1(1)/cθ.

Since the cosine of angle θ is defined as being positive by the equation cθ = (1 − s2θ)
1

2 , θ will lie in
the range − 1

2
π < 0 ≤ 1

2
π. At θ = 1

2
π there is a singularity in the sense that φ and ψ are indeterminate.

For aerial movements such as twisting somersaults this will not present problems since the tilt angle θ
typically lies in the range −π/8 < θ < π/8 and does not approach the value 1

2
π.



Internal orientation angles

The configuration of the body, or internal orientation, is defined by angles which specify the relative
orientations of adjacent body segments. It is assumed that these segments are rigid bodies and that
relative movement of adjacent segments comprises rotation about joint centres which are axed in the
rigid bodies. As an example, the orientation of the left upper arm relative to the chest will be defined.

Figure 3 shows the joint centres S, E and W at the left shoulder, elbow and wrist. The coordinate
frame a of the left upper arm comprises unit vectors a1, a2, a3 where:

a3 is parallel to ES

a2 is parallel to a3 ×WE

a1 = a2 × a3.

Figure 3: The positions of the joint centres S, E and W at the left shoulder, elbow and wrist determine
the angles δa, εa and ψa which define the orientation of the left upper arm relative to the chest
axes c1, c2 and c3.

If the arm frame a is initially aligned with the chest frame c then successive rotations through −δa
about a1, −εa about a2, ψa about a3, bring frame a into its final orientation (Fig. 3). For this choice
of rotations δa is the angle of elevation in the sagittal plane, εa is the angle of abduction away from the
sagittal plane and ψa is the angle of medio-lateral rotation about the longitudinal axis of the left upper
arm.

Let Sac be the matrix which transforms the a-coordinates of a free vector into c-coordinates. It should
be noted that the origins of frames a and c are not of importance as far as rotations of a free vector are
concerned. The rotations of the left upper arm will, of course, be about the joint centre S at the left
shoulder.

Frame a will be brought into alignment with frame c by successive rotations through −ψa about a3,
εa about a2 and δa about a1. If R3(−ψa), R2(εa) and R1(δa) are the corresponding rotation matrices:

Sac = R1(δa) ·R2(εa) ·R3(−ψa)

=





cεcψ −cεsψ −sε
sδsεcψ + cδsψ −sδsεsψ + cδcψ sδcε
cδsεcψ − sδsψ −cδsεcψ − sδcψ cδcε





where s denotes sine and c denotes cosine.
The columns of Sac are the c-coordinates of the unit vectors a1, a2, a3 so that:

Sac =





A1(1) A2(1) A3(1)
A1(2) A2(2) A3(2)
A1(3) A2(3) A3(3)







where Ak(j) denotes jth component of ak in frame c. Ak(j) may be calculated as the scalar product
of the vectors ak and cj(k = 1, 2, 3; j = 1, 2, 3).

Comparing corresponding elements in the two expressions for Sac permits the calculation of the sine
and cosine of each orientation angle as:

sin εa = −A3(1)
cos εa = (1− sin2 εa)

1/2

sin δa = A3(2)/ cos εa

cos δa = A3(3)/ cos εa

sinψa = −A2(1)/ cos εa
cosψa = A1(1)/ cos εa.

Since the cosine of angle εa is defined to be positive, εa. will lie in the range − 1

2
π < εa ≤ 1

2
π. There

is a singularity at εa = 1

2
π in the sense that δa and ψa are indeterminate when cos εa = 0. This itself

is not a problem since, when film data are used, cos εa will never be exactly zero. When the arm is
abducted so that it is approximately perpendicular to the sagittal plane, cos εa will be small and errors
in the film data may produce large changes in the angles εa and ψa. Again this is not a problem since
the arm positions corresponding to the erroneous angle values will always be close to the actual arm
positions and the angular momenta associated with the erroneous arm movements will be small.

However, if repeated digitisation of the film data is used to produce more than one estimate of each
angle, it is possible for two estimates to diverge and differ by approximately 2π radians. This situation
may be avoided by replacing a given estimate with the average of that estimate and the first estimate
whenever the difference from the first estimate is greater than π radians. This procedure forces all
estimates to follow the same general pattern as the first estimate. An average of all estimates may then
be used.

It should be noted that singularity problems may be avoided by using attitude matrices (Woltring
and Huiskes, 1985) or Eulerian parameters (Huston et al., 1978) rather than orientation angles. The
present approach was adopted so that orientation angles could be used as input to a simulation model
(Yeadon et al., 1990).

Calculation of an angle from sine and cosine values

Once the sine and cosine of an angle A are known it is a simple matter to determine the angle in a
particular range: e.g. −π < A ≤ π. However, it is necessary to determine a sequence of angle values
from a sequence of sine and cosine values in such a way that the time history of the angle is continuous.
This may be done as follows.

The initial value A0 is obtained in the range −π/2 < A ≤ 3π/2 from the values sinA0 and cosA0

using:

A0 = arctan(sinA0/ cosA0) (for cosA0 > 0)

A0 = π + arctan(sinA0/ cosA0) (for cosA0 ≤ 0)

Subsequent values are calculated inductively. In order to calculate the value of angle A from sinA,
cosA and the preceding value A1, let B be the angle in the range −π < B ≤ π defined by:

cosB = cosA cosA1 + sinA sinA1 = cos(A−A1)

sinB = sinA cosA1 − cosA sinA1 = sin(A−A1).

A is then obtained as A = A1 + B so that A differs from the preceding value A1 by less than π
radians. This incremental procedure avoids the discontinuities which arise when an angle is calculated
solely from its sine and/or cosine as was done by Gervais and Marino (1983).

Curve fitting techniques

Once a sequence of angle values has been determined, it is necessary to obtain angle values and rates of
change at intermediate times in order to integrate the equations of motion using a numerical procedure.



The determination of interpolated values and derivatives may be accomplished by fitting a ’smooth’
function to the data values. Functions which have been used are polynomials (Plagenhoef, 1968), Fourier
series (Anderssen and Bloomfield, 1974; Hatze, 1981), cubic splines (Reinsch, 1967) and quintic splines
(Wood and Jennings, 1979). Cubic splines have been shown to give better estimates of derivatives than
polynomials (Zernicke et al., 1976) while quintic splines produce better endpoint derivatives than cubic
splines and Fourier series (Wood and Jennings, 1979).

The closeness of fit and smoothness of a quintic spline are governed by error estimates of the data.
In the quintic spline of Woltring (1985), adapted from Utreras (1980), a single estimate of accuracy is
inferred from the data sets whereas the spline of Wood and Jennings (1979) permits the weighting of
data points by requiring individual error estimates for each data value.

The latter procedure finds the quintic spline function g(t) which minimises the smoothness integral:

∫ tN

t1

[g′′′(t)]2 dt (where g′′′ is the third derivative of g)

subject to the closeness of fit constraint:

N
∑

i=1

(g(ti)− yi)
2/(δyi)

2 ≤ N

where {(ti, yi), i = 1, N} is the set of data points and δyi are standard errors of measurement.
This quintic spline procedure was adopted since the constraint condition permits the use of individ-

ual error estimates at each data point whereas the spline of Utreras assumes that errors are normally
distributed and uses a single error estimate. When digitising film of twisting somersaults it is clear that
there will be phases in which a given joint centre cannot be seen so that an estimate of its location will
be poor. As a consequence, the accuracy of angle estimates will be variable and it is appropriate to use
individual error estimates at each data value. Such individual error estimates may be obtained from film
by using repeated digitisation to produce two or more estimates of each angle value.

It is possible that the general spline package of Lyche and Schumaker (1973), expanded by Woltring
(1986), will provide better derivative estimates than the quintic spline of Wood and Jennings (1979)
since the package permits higher order splines and estimates an optimal amount of smoothing.

Cinematography

Three-dimensional filming techniques may be divided into two groups:
(1) Systems which require field measurements (Miller, 1970; Bergemann, 1974; Penrose et al., 1976).
(2) Systems which do not require field measurements (Van Gheluwe, 1978; Shapiro, 1978; Walton,

1981).
Group 1 systems have the disadvantage that either the cameras must be placed in known locations

or on-site measurements must be made to determine the camera locations. Group 2 systems are free
from such camera location requirements but require that the reference points used for calibration be
distributed throughout the region of interest (Miller et al., 1980; Wood and Marshall, 1986). Since both
techniques produce accuracies of 5 mm in a field of 3 m (Penrose et al., 1976; Shapiro, 1978) a choice of
system may be made on the basis of convenience.

In the present study trampoline movements were to be filmed. In this situation it was easier to
place the cameras in specified locations rather than to locate reference points throughout the field of
movement. The following field measurement approach was therefore adopted.

Cameras F and S are positioned to the front and to the side of a tri-axial calibration frame with
origin O so that FO and SO are horizontal and perpendicular (Fig. 4). The distances dFO and dSO
are measured. The cameras are aligned so that the origin O is approximately centred in the camera
viewfinders. The actual orientation of each camera is determined by digitising the four corners of the
film frame so that the position of the centre of the image relative to the image of the reference origin O
can be obtained (Yeadon, 1984).

Knowing the location and orientation of each camera and the digitised coordinates of the points of
the calibration frame permits the reconstruction of rays FA and SB, on which the joint centre R should
lie, from the digitised coordinates of the film images of R (Fig. 4). An estimate of the location of point R



Figure 4: The location of the point R in space is reconstructed from film data as the midpoint of the
common perpendicular PQ to the rays FA and SB from the camera positions F and S.

is then obtained as the midpoint of the common perpendicular PQ to the rays FA and SB. This location
minimises the sum of the squares of the distances from the rays FA and SB.

In this way the three-dimensional locations of the joint centres are obtained so that the unit vectors
defining the frames of reference of the body segments may be determined.

Synchronisation

Data sets obtained from two or more views may be combined to produce accurate estimates of spatial
coordinates only when they correspond to the same instant of time. Such synchronisation may be
achieved either physically, where the original data sets are obtained at the same times, or analytically,
where time-matched data sets are interpolated from the original data.

Physical synchronisation may be achieved by using a single camera in conjunction with a mirror,
although a large mirror is required for human movement and distortion errors can occur. Another
method is to use electronically phase-locked cine cameras. Redlake Corporation states that the accuracy
of LOCAM phase lock camera shutters is ±9 degrees which corresponds to a difference of ±0.25 ms at
100 frames per second.

Analytical synchronisation may be effected using a timing device which is in view of each camera and
then fitting the time-displacement data points with a suitable function to obtain interpolated values.
The accuracy of the time values for a millisecond timer is ±0.5 ms, but this can be improved by fitting a
straight line to the frame times to remove the effect of rounding the times to the nearest millisecond. This
procedure assumes that the camera framing rates remain constant. ln this study, spring driven cameras
were used and so the cubic spline of Reinsch (1967) was used to fit the frame times, since it allows for
variation in the framing rate but defaults to a linear fit when apparent variation can be accounted for
by rounding errors.

While it is possible to use an interpolation spline, which passes through the time-displacement data
points, to obtain interpolated values, such a procedure will maintain or increase the error level present
in the displacement data. A better procedure is to reduce the error level of the interpolated estimates
by fitting a spline whose closeness of fit is based upon the errors in the displacement data.

Error estimates

In order to fit splines to the frame times, displacement data and orientation angles, it is necessary to
have estimates of the errors in the data values.

If the actual time t is rounded to the nearest millisecond to give the estimate T , the error (t−T ) has
variance v where:

v =

∫ T+ 1

2

T−
1

2

(t− T )2 dt =

∫ + 1

2

−
1

2

t2 dt =

[

t3

3

]+ 1

2

−
1

2

=
1

12
.

Thus, the standard deviation is 1/
√
12 ∼= 0.3 ms. This value may be used as an error estimate when

spline fitting the frame times.



If each film is digitised n times there will be n independent estimates xi(i = 1, n) of each displacement
data value x. If xi(i = 1, n) are normally distributed then an unbiased estimate of the variance var(x) is
given by:

var(x) =

n
∑

1

(xi − a)2/(n− 1)

where a =
∑n

1
xi/n is the mean.

In the present study, the number of digitisations was minimised by choosing n = 2 so that a local
estimate of the variance is given by:

Vl =
1

2
(x1 − x2)

2.

In order to calculate a standard deviation of the estimates x1 and x2 for fitting splines, there are
two obvious possibilities. The first is to use the expression for the local variance Vl which is based solely
on the difference (x1 − x2). The second possibility is to calculate a global variance Vg over all the film
frames. The disadvantage of the first method is that points will be overweighted in the spline procedure
when the difference (x1 − x2) chances to be artificially low. The disadvantage of the global technique is
that no use is made of the local information given by (x1 − x2).

A compromise solution may be obtained by defining the error estimate as: δx = (kVl + (1− k)Vg)
1/2

with 0 < k < 1. A choice of k = 0.25 means that a large error is underestimated by at most a factor of

2 and a lower bound of about 0.87V
1/2
g is placed on δx.

Using two cameras and digitising each film twice produces four combinations of the interpolated data
values. As a consequence, there are four estimates A11, A12, A21, A22 of each orientation angle, where
Aij is produced by the ith digitisation of the front camera film and the jth digitisation of the side camera
film (i = 1, 2; j = 1, 2). Thus. there are two independent pairs of angle estimates, namely A11 : A22 and
A12 : A21.

Each orientation angle A is some function G of the digitised coordinates of all the joint centres:

A = G(x1, x2, . . . xn, y1, y2 . . . yn)

where xi(i = 1, n) are the coordinates obtained using the first camera and yi(i = 1, n) are the coordinates
obtained using the second camera.

If second degree terms in the digitisation errors δxi, δyi are neglected, the Taylor expansion becomes:

A = G(a1, a2, . . . an, b1, b2, . . . bn)

+

n
∑

1

δG

δxi
· δxi +

n
∑

1

δG

δyi
· δyi

where ai and bi are the error-free values of the digitised coordinates, xi = ai + δxi and yi = bi + δyi.
Thus:

A = A0 +X + Y

where A0 is the error-free value of angle A, X is a linear function of the δxi digitising errors and Y is a
linear function of the δyi digitising errors.

The four estimates of angle A take the form:

A11 = A0 +X1 + Y1

A12 = A0 +X1 + Y2

A21 = A0 +X2 + Y1

A22 = A0 +X2 + Y2

where X1, Y1 are errors arising from the first digitisations and X2, Y2 are errors arising from the second
digitisations.

Thus, the mean A of the four estimates is given by:

A = A0 +
1

2
(X1 +X2) +

1

2
(Y1 + Y2)



where X1 and X2 are values taken by the random variable X and Y1 and Y2 are values taken by the
random variable Y . For reasons of symmetry the mean A is the best estimate of the error-free value A0.

The variance var(A) of the mean A is given by:

var(A) =
1

2
var(X) +

1

2
var(Y )

=
1

2

[

1

2
(X1 −X2)

2

]

+
1

2

[

1

2
(Y1 − Y2)

2

]

=
[

(A11 −A22)
2 + (A12 −A21)

2
]

/8.

A quintic spline may now be fitted to the average A to obtain first and second derivatives. If error
estimates of the derivatives are required, these may be obtained by fitting individual quintic splines to
A11, A12, A21 and A22.

APPLICATION

The method was applied to a performance of a forward somersault with 1 1

2
twists on trampoline. Bolex

16 mm spring driven cameras were positioned to the front and to the side of the trampoline forming
a right-angled triangle with a tri-axial calibration frame which was inserted through the centre of the
trampoline bed. The distances of the cameras from the origin of the calibration frame were measured,
the calibration frame was filmed and was then removed from the trampoline. A millisecond timer was
placed in the fields of view of the two cameras and the twisting somersault was filmed using nominal
framing rates of 64 frames per second.

Figure 5: The time histories of the angles of somersault, tilt and twist for a forward somersault with 1 1

2

twists. Two independent sets of angle estimates, obtained by repeated film digitisation, are
represented using (+) and (◦).

The images of the calibration points and the four corners of the projected film frame were digitised
to establish scale factors and camera orientation. This was repeated four times in order to reduce the



Figure 6: Graphics sequences of a forward somersault with 1 1

2
twists viewed from (a) in front and (b)

above.

effects of digitisation errors. Joint centres at the wrist, elbow, shoulder, hip, knee and ankle on the left
and right sides of the body were digitised for each frame of the airborne phase. The time given by the
millisecond timer was obtained for each film frame. The above digitisation procedure was performed
twice for each of the two films.

The time values for each frame were corrected using a cubic spline to remove rounding errors. Each
set of displacement data was fitted with a quintic spline, using error estimates based upon the repeated
digitisation, and interpolated values were obtained at 100 equally spaced time intervals to produce
synchronised sets of displacement data.

Three-dimensional coordinates of the joint centres were calculated at each of the 101 time values.
Since each elm was digitised twice, there were four combinations of the digitised data so that four
estimates were obtained for the location of each joint centre. This produced four estimates of each
orientation angle at each time value. The averages of the four estimates were fitted with quintic splines
using error estimates based upon the variance of the four estimates.

Figure 5 depicts the time histories of two independent estimates of each of the angles φ, θ and ψ
which correspond to somersault, tilt and twist. The mean error estimates for these three angles were
0.2◦ for somersault, 0.2◦ for tilt and 1.1◦ for twist. The mean value of the error estimates for all 17
orientation angles was 2.1◦. These values can be regarded as underestimates since they are based upon
repeated digitisation and do not include any systematic errors.

The calculated orientation angles were input into the SAMMIE man model (Kingsley et al., 1981) to
produce sequences depicting the twisting somersault from two viewpoints. Figure 6a gives the view from
the front camera position whereas the overhead view shown in Fig. 6b corresponds to neither camera
viewpoint. The ability to provide viewpoints which are not directly available can be useful for gaining a
better appreciation of the changes in orientation and configuration during a movement.

The quintic splines of the orientation angles may be used to obtain derivatives at any time. The
accuracies of such derivative values will be considered in parts III and IV of this series where the
calculation of angular momentum and the simulation of aerial movement are described (Yeadon, 1990;
Yeadon et al., 1990).
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