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Abstract 

This work investigates the implications of natural gas composition on the combustion in a heavy-duty 

natural gas engine and on the associated pollutant emissions. In this engine system, natural gas is injected 

into the combustion chamber shortly before the end of the compression stroke; a diesel pilot that precedes 

the natural gas injection provides the ignition source. The effects of adding ethane, propane, hydrogen, and 

nitrogen to the fuel are reported here. The results indicate that these additives had no significant effect on 

the engine’s power or fuel consumption. Emissions of unburned fuel are reduced for all additives through 

either enhanced ignition or combustion processes. Black carbon particulate matter emissions are increased 

by ethane and propane, but are virtually eliminated by including nitrogen or hydrogen in the fuel. 

Key Words: Natural gas composition; hydrogen blended fuel; direct injection engine; pilot ignition; engine 

emissions 

1. Introduction 

Natural gas is a potential alternative to conventional liquid fuels for use in automotive internal 

combustion engines. While predominantly methane (CH4), natural gas also contains heavier hydrocarbons 

and inert diluents. The levels of these species vary substantially with geographical source, time of year, and 

treatments applied during production or transportation. The addition of unconventional and bio-derived 

gases to fossil natural gas can have an even greater effect on fuel composition [1]. Natural gas fuelling can 

reduce greenhouse gas (GHG) emissions compared to diesel; adding hydrogen to the natural gas offers 

even further GHG reductions from transportation applications [2]. When considering the use of natural gas, 

it is vital to understand the influences of fuel composition on the combustion system. This work evaluates 

the implications of natural gas composition on the combustion process and pollutant emissions for a heavy-

duty, pilot-ignited, engine fuelled with directly injected natural gas.  

1.1 Directly injected natural gas Engine 

One technology for natural gas fuelling of heavy-duty engines, developed by Westport Power Inc., 

uses natural gas injected directly into the combustion chamber late in the compression stroke, retaining the 

performance and efficiency of an equivalently-sized diesel engine [3]. A small amount of diesel fuel is 

injected late in the compression stroke, prior to the natural gas injection. The auto-ignition and combustion 
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of this pilot fuel provides the ignition source for the gaseous fuel; the latter then burns in a predominantly 

non-premixed combustion event. Compared to diesel fuelling, the main fuel’s lower carbon:energy ratio 

reduces carbon dioxide (CO2) emissions; its lower adiabatic flame temperature reduces oxides of nitrogen 

(NOx) emissions; and, its lower sooting tendency reduces fine particulate matter (PM) emissions. As the 

natural gas is not premixed in the combustion chamber, emissions of unburned fuel are significantly lower 

than from many other natural gas fuelling technologies [4]. Using exhaust gas recirculation (EGR) can 

achieve substantial further reductions in NOx emissions; however, a lack of oxidizer at high levels of EGR 

degrades the combustion and increases the emissions of unburned hydrocarbons (HC), carbon monoxide 

(CO), and PM [5]. At the EGR levels required to achieve low NOx levels, more than 90% of the PM 

originates from the natural gas [6].  

2. Natural Gas Composition 

Natural gas is a mixture of various hydrocarbon molecules. Commercial-grade natural gas 

compositions vary from 70-95% CH4, with the balance composed of heavier hydrocarbons (primarily 

ethane, C2H6, and propane, C3H8) as well as diluents such as molecular nitrogen (N2) and CO2. There are 

also trace levels of sulphur compounds, often added as odorants, and other hydrocarbon species.  

The effect of fuel composition on the combustion process and on the emissions from natural gas 

fuelled engines has been addressed in both fundamental and applied studies. The majority of research has 

focused on premixed charge spark ignition engines, which are currently the predominant form of natural 

gas engines [4]. These results, along with studies of non-premixed flames in laboratory-scale burners, 

provide insight into the effects of natural gas composition. However, there has been relatively little work on 

the complex combustion seen in a non-premixed compression-ignition engine, as investigated here.  

2.1 Effect of Heavy Hydrocarbons 

The principal heavy hydrocarbons found in natural gas are ethane and propane. For premixed auto-

ignition combustion, the greatest influences of these species are in the ignition and early combustion 

phases, where they enhance the ignitability of the mixture; this is primarily a result of increases in the 

concentration of reactive radicals. At high temperatures, increases in the concentrations of H, OH, HO2 and 

H2O2 radicals enhanced the natural gas ignition process [7,8]; at temperatures below ~1200 K, it is the 

methylperoxy (CH3O2H) radical that fills this role [9]. The heavier hydrocarbons also promote the formation 

of hydrocarbon radicals, including C2 species such as the ethyl radical (C2H5) and acetylene (C2H2) [9].  

Ethane and propane also influence the combustion event and pollutant emissions. Enhanced radical 

formation extends the lean combustion limit [10,11]. In premixed charge spark-ignition engines, ethane 

addition increases the flame propagation rate [12]. No significant effects on CO emissions are reported in 
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most engine studies; however, some researchers report increases in HC emissions with increased ethane 

and propane concentrations [13], although these results are not consistent across all reported studies. Fuel 

quality sensors [14] and closed-loop control engines [15] have permitted spark-ignition engines to run 

successfully on a wide range of fuel compositions.  

The presence of heavy hydrocarbons also affects the ignition process in non-premixed natural gas 

combustion. At temperatures >1400 K, fuel additives have little effect as this process is mixing limited [16]. 

At lower temperatures, the addition of either ethane or propane is found to reduce ignition delay times by as 

much as 0.7 ms [16]. However, there is a limit to the effectiveness of improved kinetics, especially at higher 

temperatures; beyond a certain point mixing limitations dominate the ignition processes. The shorter 

ignition delay time has also been identified as a potential source for increased NOx emissions with ethane 

addition to the fuel [17]; however, substantially more work is required to understand the effects of the 

heavier hydrocarbons on the ignition and pollutant formation mechanisms of a natural gas engine using a 

non-premixed direct-injection combustion system.  

2.2 Fuel Dilution with Nitrogen 

Small quantities of nitrogen may be found in natural gas, often added as a diluent to maintain a 

specified heating value. Other than reducing the mass- or volume-specific energy content (heating value) of 

the fuel, small levels of an inert diluent like N2 are unlikely to significantly influence the combustion event. 

However, higher dilution levels may have a greater impact; these influences have been studied in various 

combustion systems. For a natural-gas fuelled, premixed-charge engine, adding N2 to the fuel reduces NOx 

emissions but impairs efficiency [18]. In a low pressure non-premixed combustion system (an industrial 

boiler), gaseous fuel dilution reduces NOx emissions more effectively than does oxidizer dilution; 

fundamental studies attribute this to more rapid quenching of the NO-forming reactions [19]. In laminar 

counter-flow diffusion flame studies, N2 dilution is used to reduce fuel concentrations; no significant effects 

are observed until the fuel stream contains more than 80% N2 (by volume) [20]. These results indicate that 

the principal influence of nitrogen addition manifests itself by reducing the heating value of the fuel. There is 

no evidence of direct participation in the reaction kinetics, even at very high N2 concentrations.  

The effects of N2 addition on a heavy-duty engine fuelled with directly injected natural gas have been 

studied previously [21]. The key findings from this work indicated that diluting the natural gas (while 

increasing the injection mass to retain the same total fuel energy) resulted in a slower initial combustion but 

faster and more stable late-stage combustion. This is attributed to the higher kinetic energy of the gas jet 

and resulting improvement in mixing. The current work compares these effects with those of other fuel 

additives. 
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2.3 Hydrogen Addition 

The most important effect of blending natural gas and hydrogen for use in homogenous-charge, 

spark-ignition engines is extension of the lean combustion limit [22]. Combustion bomb studies demonstrate 

that hydrogen’s enhanced diffusivity results in a higher turbulent flame propagation rate for lean mixtures 

[23]. The hydrogen also increases the flame’s resistance to stretch [24], reducing local extinction events. At 

a constant air-fuel ratio, NOx emissions are increased due to a higher adiabatic flame temperature while CO 

and HC emissions are reduced [25]. Flame stability in the presence of EGR is also improved [26].  

For non-premixed combustion of hydrogen/methane blends, for a co-flowing jet diffusion flame, non-

premixed flame stability is enhanced with increasing hydrogen content [27]. In a non-premixed steady flow 

burner, hydrogen addition reduces prompt NO formation due to a reduction in CH, but increases thermal 

NO due to higher flame temperatures and higher H, O, and OH radical concentrations [28,29]. In a direct-

injection natural gas engine, replacing the natural gas with a hydrogen/methane blend increases the 

ignitability of the gaseous fuel and improves combustion stability, leading to significant reductions in 

emissions of combustion by-products including CO, HC, and PM, while higher temperatures increase NOx 

emissions [30].The current work compares these effects with those of other fuel additives. 

3. Experimental Apparatus and Procedures 

A single-cylinder research engine equipped with a prototype fuelling system was used to investigate 

the effects of gaseous fuel composition on a pilot-ignited, directly injected natural gas engine. The engine 

used is a Cummins ISX series modified for single cylinder operation (Table 1); the experimental facility has 

been described in detail previously [31,32]. The diesel and natural gas injection processes are controlled 

electronically using a single multi-fuel injector. The engine is also equipped with a custom air-exchange 

system to ensure that the charge conditions are independent of variations in fuel composition and injection 

timing. A cooled high-pressure EGR loop controls intake charge dilution. 

Table 1: Engine and Injector Specifications 

Engine Cummins single cylinder 4-stroke, 4-valve 

Fuelling Direct injection; diesel pilot, gaseous main fuel 

Displacement (/cylinder) 2.5 L 

Compression Ratio 17:1 

Bore/Stroke/Connecting Rod Length 137/169/261 mm 

Injector Westport Innovations Inc. dual-fuel concentric needle  

 Injection control Separate diesel and NG solenoids 

 Injector holes 7 pilot, 9 gas 

 Injection angle 18
o
 below fire deck 

 
The engine facility is fully instrumented, with measurements of air and fuel flow (both diesel pilot and 

natural gas) as well as exhaust gas composition. The gaseous fuel flow measurement uses a coriolis-force 

mass flow sensor, and hence is insensitive to changes in gaseous fuel composition. The combustion 
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process is monitored using a high-speed water-cooled in-cylinder pressure transducer in conjunction with a 

½
o
 crank-angle encoder to identify the piston location. The net heat-release rate (HRR) can be calculated 

from this information [33]: 
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where θ is the crank angle (CA), p is the in-cylinder pressure at a given crank angle, V is the cylinder 

volume at that point and γ is the specific heat ratio (cp/cv – assumed constant). The net heat release rate 

(HRR) represents the rate of energy release from the combustion processes less wall heat transfer and 

crevice flow losses. The start-of-combustion for the gaseous fuel and the peak combustion intensity are 

identified from the HRR. Integrating the HRR as a function of CA (integrated heat release, IHR) provides a 

representation of the total energy released up to a specified CA. The mid-point of the energy release (50% 

IHR) is used to represent combustion timing, while the time between the 10% IHR and 90% IHR points is 

used to represent the duration of the gaseous fuel combustion. These parameters are based on the 

average heat-release rate from 50 consecutive cycles.   

Exhaust emissions equipment includes a raw exhaust emissions bench equipped with NOx, O2, CO, 

CO2, total HC and CH4 analyzers. A separate CO2 analyzer measures the intake CO2 concentration; when 

combined with the exhaust CO2 measurement, the EGR fraction can be determined. PM emissions are 

measured using a custom built micro-dilution system, where the raw sample is diluted with clean dry air at a 

volume ratio of 15:1. Total mass is measured with a tapered element oscillating microbalance (TEOM). The 

TEOM results were validated with gravimetric filter mass measurements (probability of association using 

chi-squared analysis > 99.9%). The black carbon (BC) concentration is measured using an Aethalometer
TM
 

(Magee scientific) where PM is collected on a quartz filter; the attenuation of monochromatic light shone 

through the filter indicates the BC content of the collected PM. More information on the experimental 

apparatus and the emissions measurement equipment is available elsewhere [32]. 

3.1 Fuels 

The additives to natural gas investigated in this work were propane, ethane, hydrogen and nitrogen; 

pure methane was also used as a comparison to the natural gas. The nitrogen, ethane and propane fuel 

blends were prepared using bottled gas (purity >99.9%) combined with commercially-distributed natural gas 

in large-volume storage tanks. The blends were left in the storage tanks for at least 48 hours to ensure that 

they were fully mixed before being supplied to the high-pressure gas compression system for supply to the 

engine. To avoid condensation of the heavy hydrocarbons, all concentrations were kept below the 

saturation partial pressure at all times. Random samples of the fuels were taken from the supply line to the 
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engine during the testing with each fuel, and the results were analyzed by gas chromatography. The 

Hydrogen blends and pure methane were supplied as bottled gases with compositions certified by the 

supplier (Praxair Inc.).  The principal constituents of the fuels used in these tests are shown in Table 2. All 

other measured constituents (including butane, pentane, hexane, and heptane) were < 0.1%.  

Table 2: Fuel Compositions (molar percentage) 

 Natural 
Gas 

Low 
N2 

High 
N2 

Low 
ethane 

High 
ethane 

Low 
propane 

High 
propane 

Low 
H2 

High 
H2

* 
CH4

* 

N2 1.47 18.89 38.88 1.09 1.19 2.02 2.82 0.34 0.0 0.0 

H2 0 0.0 0.0 0.0 0.0 0.0 0.0 14.7 35.1 0.0 

CH4 96.6 78.2 59.4 91.43 89.39 93.5 91.3 84.0 64.9 100 

CO2 0.44 0.28 0.24 0.40 0.34 0.41 0.38 0.05 0.0 0.0 

C2H6 1.41 2.31 1.17 6.60 8.62 1.59 1.5 0.75 0.0 0.0 

C3H8 0.32 0.25 0.22 0.32 0.28 2.23 3.73 0.19 0.0 0.0 

MW
†
 (kg/kmol) 16.7 18.83 21.04 17.37 17.63 17.34 17.85 14.14 11.09 16.04 

LHV
‡
 (MJ/kg) 48.1 35.5 23.8 48.3 48.2 47.5 46.9 51.2 54.4 50.0 

Tadiabatic
**
 (K) 2485 2440 2400 2530 2550 2495 2510 2500 2520 2485 

H:C ratio 3.94 3.93 3.94 3.88 3.86 3.91 3.88 4.32 4.61 4.00 

MN
††
 103 103 116 85 80 86 82 85 64 100 

Wobbe
‡‡
 44.6 34.9 24.7 45.6 45.9 44.8 44.8 43.7 41.3 45.5 

Cp/Cv 1.308 1.314 1.337 1.299 1.296 1.301 1.296 1.32 1.338 1.311 

* assessment conducted by Praxair Inc. All other compositions determined by gas chromatography. 
†
 molecular weight (MW) 
‡
 lower heating value (LHV) of gaseous fuel 
** adiabatic flame temperature calculated for a stoichiometric mixture 
††
 methane number (MN), calculated based on measured composition, representative of knocking 

tendency [34] 
‡‡
 Wobbe index (MJ/m

3
), HHV / gravityspecific  [14] 

 
Table 2 also provides key characteristics (calculated based on the fuel composition) of the blended 

fuels. These include the molecular weight (MW), lower heating value (LHV), hydrogen to carbon (H:C) ratio, 

and the adiabatic flame temperature. The flame temperature is calculated based on a stoichiometric 

mixture: one of the confounding effects of varying the fuel composition is that it can influence both the 

adiabatic flame temperature and the mixture fraction in the reaction zone of a non-premixed combustion 

event. 

3.2 Experimental Conditions 

A mid-load operating condition (shown in Table 3), representative of mid-load steady-state cruising 

for a heavy-duty engine, was selected to compare the effects of the various fuels. An EGR level of 30% 

was used to achieve relatively low NOx emissions without degrading the combustion event.  

Table 3: Engine operating conditions 

Speed (RPM) 1200 

Gross Indicated Power (kW) [% load] 35 [75%] 

Gross Ind. Mean Effective Pressure (bar) 13.5 

Gaseous Fuel Pressure (MPa) 21 

EGR (mass %)  30 

Intake Oxygen Mass Fraction 0.19 

Combustion Timings (50% IHR) 0,5,10,15
o
ATDC 
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Varying the combustion timing relative to the engine crank angle (based on the mid-point of the 

combustion – 50% IHR) provides a range of combustion conditions while maintaining constant charge 

composition and overall equivalence ratio. For this work, the combustion timing was controlled by varying 

the timing of the start of the pilot fuel injection process. The timing of the gas start-of-injection (GSOI) was 

fixed at 1.0 ms after the end of the diesel injection. The 50% IHR was used as the control variable 

representing the combustion timing; the start-of-injection timing was adjusted for the different fuel blends to 

maintain the 50%IHR at the specified value. For all timings, the engine’s power output was held constant by 

varying the mass flow-rate of the gaseous fuel. The pilot quantity was fixed at 5% of the total fuel on an 

energy basis; this amounted to approximately 6 mg diesel / cycle for all the conditions tested. The pilot 

diesel and gaseous fuel rail pressures were constant at 21 MPa for all the tests. 

3.3 Experimental Methodology 

Due to the time and cost involved in preparing the individual fuel blends, the tests could not be fully 

randomized. As a result, the experiments were conducted as blocks, with each fuel blend representing a 

specific block. The order of testing of the various fuel additives was randomized. For the ethane, propane, 

and nitrogen tests, sufficient fuel was prepared in advance to conduct at least 3 replications of each test 

condition. The presented results represent an average of these values. Natural gas tests were conducted at 

the beginning, middle, and end of the test plan: at least six test points per operating condition were 

collected. Experimental uncertainty, Table 4, for each fuel parameter is estimated based on the standard 

deviation of the data collected at each test point; as such, it includes errors due to variability in both 

measurement equipment and in engine operating condition. The larger uncertainty in the PM 

measurements is a result of the added complexity of the measurement system for these species combined 

with greater inter-test variability in emissions levels. 

Table 4: Average experimental variability  

GID ± 4% 

GISFC ± 1% 

Maximum HRR ± 4% 

Burn Duration ± 2% 

CO ± 9% 

NOx ± 6% 

HC ± 4% 

PM (total mass) ± 15% 

PM (black carbon) ± 20% 

 
Due to the cost of supplying bottled hydrogen/methane blends and pure methane, it was only 

possible to conduct a single test at each test point. A replication of the intermediate timing point (50% IHR 

at 10
o
 ATDC) was also conducted for all cases, to ensure repeatability of the results.  
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4. Results 

To aid comparison and interpretation, the emissions and performance results for each of the fuels 

tested are presented relative to the equivalent baseline natural gas condition. That is, the values presented 

are the results for one fuel at a specific timing, divided by the average value with natural gas fuelling at the 

same timing (Relative Resultfuel x, timing y = Measuredfuel x, timing y / MeasuredNG, timing y). These results are then 

presented in bar-charts, subdivided by fuel blend. For each fuel, four bars representing the four combustion 

timings are presented. Further details and interpretation of the hydrogen and nitrogen results are available 

elsewhere ([30] and [21], respectively). 

4.1 Combustion Process 

Varying the fuel composition has a significant influence on the combustion event. These influences 

are summarized in Figure 1, where the gaseous-fuel ignition delay (GID), maximum heat release rate, fuel 

consumption and burn duration are presented. The GID is the time from the actual start-of-injection of the 

gaseous fuel to the first clear indication of gaseous fuel combustion. The injector mechanical delay, which 

has been measured at 0.75 ms independent of fuel composition or cylinder pressure, is not included in this 

delay. The start of combustion is identified from the heat release rate as the inflection point where rapid 

heat release starts to occur after the pilot fuel has ignited. As such, it is likely not the same as the first 

appearance of a flame kernel on the gaseous jet: however, it does provide a reliable indication of the 

commencement of the main gaseous fuel combustion event.  

Figure 1 indicates that, compared to natural gas fuelling, the GID is reduced by all the fuel additives; 

the only increase is with pure methane. Hydrogen addition to the fuel results in an increase in ignitability for 

the gaseous fuel, and a corresponding reduction in ignition delay [30]. The effects of ethane and propane 

are similar to those of hydrogen; the fuel is more ignitable, leading to reduced ignition delays; this agrees 

with previous work on homogeneous charge engines [7,16]. The absence of these species in the pure 

methane case leads to the observed increase in GID. Nitrogen addition tends to increase the momentum of 

the gaseous jet, reducing its ignition delay by changes in mixing and spatial location [21]. This view is 

corroborated by the correlation between methane number (MN) and GID, where a 1% change in MN leads 

to a 0.75% change in GID (both relative to natural gas fuelling for a given timing) for all the fuels excluding 

N2. When N2 is included, there is no consistent relationship between MN and GID.
*
 It is interesting to note 

that despite significantly changing the in-cylinder conditions encountered during the ignition event, the 

effects of fuel composition were relatively consistent across all combustion timings. 

 

*
 The plots of correlations are available as ‘extra information’ from the journal web-site. 
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The maximum HRR (also shown in Figure 1) follows equivalent trends to the GID. There is a linear 

relationship between these two parameters, where a change of 1% in GID results in an equivalent (1%) 

change in maximum HRR (correlation coefficient 0.83, see Figure A2); only the high-N2 case differs 

significantly from this correlation, due to the significant reduction in the heating value of the fuel. This 

relationship is a result of the maximum HRR being reached during the early, premixed, phase of the 

combustion event. A shorter ignition delay will tend to result in less fuel having premixed, and as a result 

less is available to burn in the premixed combustion, reducing the peak HRR. These effects are clearly 

seen in Figure 2, which represents the HRR at a selected intermediate timing (50% IHR at 10
o
ATDC) for 

the ‘high’ levels of all fuels.  

Nitrogen fuelling results in a lower, longer heat release rate, as shown in Figure 2. This suggests that 

the combustion rate is limited by the rate at which the fuel is being introduced into the combustion chamber. 

The slower combustion is also demonstrated by the burn duration (represented by the crank-angle time 

from 10% IHR to 90% IHR) in Figure 1. Using the 10% IHR as the lower bound for the combustion duration 

ensures that this parameter represents only the gaseous combustion, and avoids the pilot fuel combustion, 

which only contributed 5% of the total energy. With the hydrocarbon additives, the burn durations are 

increased compared to natural gas; this is a result of the shorter GID leading to a reduced premixed 

combustion, and hence a longer non-premixed combustion event. This effect was particularly noticeable at 

the earliest combustion timings. 

The efficiency of the overall combustion process is represented in Figure 1 by the gross indicated 

specific fuel consumption (GISFC). This parameter represents the mass of fuel, on an energy-equivalent 

mass of diesel basis, per unit of gross indicated power produced. The various fuel blends have a 

remarkably small influence on fuel conversion efficiency. This is most likely a result of the combustion 

timing being adjusted to ensure that the mid-point of the heat-release occurred at the same timing for all 

fuels. Only the N2 case shows a significant change in efficiency. Approximately half this improvement is due 

to the increase in mass of the injected fuel, which will increase the work done during the expansion stroke. 

Improved late-cycle combustion also contributes to the improved efficiency and reduces unburned 

hydrocarbon emissions, as shown in Figure 3 [21].  

4.2 Gaseous Emissions 

Varying the fuel composition has a significant impact on emissions, as shown in Figure 3. The 

increase in adiabatic flame temperature with the addition of ethane, propane, or hydrogen to the fuel (as 

shown in Table 2) results in higher NOx emissions, as these are generated predominantly through the 

strongly temperature-dependent thermal NO mechanism [35]. The current results support this, with a 1% 
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change in Tad resulting in a 5% change in NOx emissions. The calculated adiabatic flame temperature is not 

the only factor influencing NOx emissions; changes in the fuel composition may also influence the mixture 

fraction at which reactions occur. This affects the reaction zone temperature, the temperature of the post-

reaction gases and the time before these gases mix with cooler charge, all of which strongly influence NOx 

emission levels. As a result, the changes in NOx emissions depend strongly on combustion timing, with (in 

general) smaller increases in NOx with more advanced timings. 

All the fuel additives reduce hydrocarbon emissions. These emissions are predominantly unburned 

methane (total HC and CH4 emissions were experimentally indistinguishable). The mechanisms for the 

reduction in HC emissions are thought to vary for the different fuel additives. For H2, higher radical 

concentrations and a wider flammability range result in more complete consumption of the fuel [30]. 

Conversely, the N2 addition results in improved late-cycle mixing, helping to consume more of the fuel not 

reacted in the initial combustion event [21]. The fact that the reductions in HC emissions with the ethane 

and propane are largest at the latest combustion timings suggests that these fuels may be helping to delay 

the onset of bulk quenching. Bulk quenching occurs as the in-cylinder temperature and pressure fall during 

the expansion stroke. If the combustion is late, then more of the fuel will not have reacted prior to the 

reactions being extinguished by this fall in temperature. The shorter ignition delay time could also result in 

less gaseous fuel having mixed beyond a combustible range prior to ignition occurring, reducing emissions. 

However, as the reduction in GID was relatively consistent across all timings, it is likely that this reduction in 

over-mixing is having a smaller effect than the reduced bulk quenching effect. Identifying the principal 

sources of unburned hydrocarbon emissions is an area of ongoing research. 

CO is another combustion by-product that is sensitive to fuel composition, as shown in Figure 3. The 

fact that the effect of fuel composition on CO emissions is very different from that on HC emissions 

suggests that there are different formation routes for these harmful products. This agrees with the 

interpretation that the HC emissions are primarily unreacted fuel, while the CO is a by-product of partial 

combustion. At early combustion timings, CO emissions are increased, while at late timings, they are 

reduced for virtually all the fuel blends. For N2 dilution, the increase in CO is thought to be a result of 

interaction between the gaseous jet (which will have higher momentum, and hence greater penetration, due 

to the larger mass of fuel injected) and the piston bowl [21].  For the heavy hydrocarbon additives, it is likely 

an effect of changes to the reaction zone chemistry; however, the specific nature of these effects is unclear. 

The reduction in CO emissions at the latest timing is consistent with the delay in the onset of bulk 

quenching, as discussed above, due either to improved mixing (N2) or to increased reaction zone radical 
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concentrations (ethane, propane, H2). The potential importance of this latter effect is reinforced by the 

increase in CO when the engine was fueled with pure methane. 

4.3 Particulate Matter Emissions 

The effect of fuel composition on the total particulate matter mass is shown in Figure 3. Carbon 

isotope tracer studies have demonstrated that the bulk of the PM formed under these conditions originates 

from the gaseous fuel [6]. The influence of fuel composition varies strongly with combustion timing. With N2 

dilution, the increase at early timings has been attributed to reaction zone impingement, while the relatively 

small reduction at late timings is a result of the emissions being primarily volatiles [21]. The consistent 

reductions with hydrogen addition have been attributed to increased reactive radical concentrations 

reducing the initial formation of PM and enhancing post-formation oxidation [30]. The increase in PM with 

ethane and propane is most likely a result of enhanced PM precursor formation in the reaction zone. 

Species such as C2H2 and C2H5, which are key participants in the formation of carbonaceous PM, are 

important intermediates in the chemical reaction path for natural gas with ethane or propane additives [9]. 

The fact that the increases in PM emissions are smaller at the earliest timing may be a result of the greater 

time for oxidation to occur during the expansion stroke, after the end of the main combustion. Interestingly, 

the changes in the PM emissions trend with changes in specific heat ratio (Cp/Cv) of the fuel, with a 1% 

change in specific heat ratio resulting in a 50% change in PM (see Figure A3). It is at this point unclear why 

PM trends with specific heat ratio; it is unlikely that this correlation would hold with oxygenated fuels or 

different diluents (such as CO2). 

The increase in PM with ethane and propane is primarily due to increased black carbon (BC) 

emissions. The relative increase in these emissions is shown in Figure 4, along with the relative 

contribution of the BC to the total PM mass. As the latter figure shows, the fraction of the total PM formed of 

BC does not differ significantly with ethane or propane additives. As total PM mass increases with the 

heavier hydrocarbons, this result indicates that ethane and propane are increasing both BC and volatile PM 

mass emissions. High levels of both N2 and H2 virtually eliminate the BC emissions, although the total PM 

emissions are non-zero; the balance of the emissions can be attributed to volatile species (such as 

condensed lubricating oil or diesel fuel).  

5. Implications for Engine Operation  

There are various options for accommodating the potential impacts of fuel composition variability on 

an engine fuelled with directly injected natural gas, as investigated here. The variations in composition do 

not significantly influence the performance of the engine; as a result, the engine will operate reliably over a 

wide range of compositions. On the other hand, emissions, especially of PM, are sensitive to composition. 
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Relatively high levels of ethane and propane in the fuel significantly increase PM emissions. However, the 

levels tested here are above those normally found in liquefied natural gas (LNG), which is currently the 

most promising fuel phase for heavy-duty natural gas on-road transportation engines.  

Interestingly, the Wobbe index, widely used as a measure of natural gas composition, did not predict 

the effects of fuel composition on performance or emissions of this combustion system (there was no 

significant correlation between Wobbe index and any of the parameters presented in this work). However, 

the specific heat value of the fuel is a useful indicator of PM and BC emissions, while a calculation of the 

adiabatic flame temperature will give a preliminary estimate of the effects of fuel composition on NOx.   

If the potential concentration of heavy hydrocarbons in the fuel is known, then the engine control 

system could adjust its operation to offset these PM emissions: methods could include increasing fuel 

injection pressure [5], adjusting injection timing or varying EGR levels. Ideally, a real-time analysis of fuel 

composition would provide ‘closed-loop’ control: however, it is more realistic to expect that the engine 

management system would be adjusted based on the expected fuel composition in a target market. This 

arrangement could be combined with a fuel quality requirement to ensure that the engine and fuel met 

emissions regulations. In locales with serious air-quality concerns, provision of a ‘cleaner’ fuel would have a 

direct result of further reducing emissions. 

As an alternative, the impacts of heavier hydrocarbons on emissions could be offset by including 

hydrogen or nitrogen in the fuel. The addition of nitrogen to the fuel generates substantial benefits; 

however, the high levels tested here would result in too large a reduction in vehicle range to be a practical 

transportation fuel. There is greater potential for the application of fuel dilution (either with N2 or another 

inert species) in stationary power generation, especially if a suitable diluent is readily available. The 

addition of hydrogen to the fuel significantly improves the combustion process, and has the added benefit of 

reducing tailpipe CO2 emissions. If the hydrogen is generated from low-CO2 sources, then the net GHG 

emissions from the engine could be reduced [2]. Savings in emissions of both local and global air pollutants 

through fuel optimization are additional to the reductions already achieved by replacing the bulk of the 

diesel fuel with natural gas in this engine system.  

6. Conclusions 

This work investigated the effects of varying the fuel composition in a directly injected natural gas 

engine at a fixed speed and load condition, by adding ethane, propane, hydrogen or nitrogen to the 

gaseous fuel. The principal findings from this study are: 
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1) The influences of the range of fuel compositions investigated here on the combustion event itself 

are relatively small. Reductions in ignition delay at constant combustion phasing lead to lower peak 

heat release rates. However, these changes are not large enough to significantly impair engine 

operation. Effects on fuel consumption were minimal, except for a reduction with large amounts of 

inert diluent in the fuel.   

2) Enhancing the combustion event, either through improved mixing (N2) or increased gaseous fuel 

reactivity (H2, ethane, propane) can significantly reduce unburned fuel emissions. These effects are 

effectively independent of combustion timing. 

3) Adding ethane or propane to the fuel increases PM total mass, with both BC and volatile emissions 

increasing. Conversely, the addition of N2 or H2 to the fuel virtually eliminates BC emissions. These 

effects depend significantly on combustion timing. 

4) In general, variations in NOx emissions follow changes in adiabatic flame temperature. These 

effects also vary with injection timing, suggesting that reaction zone stoichiometry and post 

combustion mixing are also influenced by fuel composition. 

5) In cases of large divergences in fuel composition from ‘average’ levels, the effects on pollutant 

emissions are sufficiently large that it may be necessary to account for fuel quality in the engine 

management system. Offsetting the presence of heavy hydrocarbons with hydrogen could 

significantly reduce emissions without impairing engine performance.  
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Figure 1: Effect of fuel composition on combustion event, relative to equivalent natural-gas fuelled timing 
condition. All four timings are shown for each fuel composition (L-R: 50% IHR at 0

o
, 5

o
, 10

o
, and 

15
o
ATDC). 
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Figure 2:  Effect of fuel composition on heat release rate. Timing for 50% IHR at 10

o
ATDC.  
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Figure 3:  Effect of fuel composition on emissions, relative to equivalent natural-gas fuelled timing 

condition. All four timings are shown for each fuel composition (L-R: 50% IHR at 0
o
, 5

o
, 10

o
, and 

15
o
ATDC). 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2
0
%
 N
  

4
0
%
 N
  

6
.7
%
 C
 H
  

8
.6
%
 C
 H
  

2
.2
%
 C
 H
  

3
.8
%
 C
 H
  

1
5
%
 H
  

3
5
%
 H
  

1
0
0
%
 C
H
  

B
la
c
k
 C
a
rb
o
n
 M
a
s
s

R
e
la
ti
v
e
 t
o
 N
a
tu
ra
l 
G
a
s

0 ATDC 5 ATDC 10 ATDC 15 ATDC
o o o o

2 2 2 2 4

3
8

3
8

2
6

2
6

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
a
tu
ra
l 
G
a
s

2
0
%
 N
  

4
0
%
 N
  

6
.7
%
 C
 H
  

8
.6
%
 C
 H
  

2
.2
%
 C
 H
  

3
.8
%
 C
 H
  

1
5
%
 H
  

3
5
%
 H
  

1
0
0
%
 C
H
  

B
la
c
k
 C
a
rb
o
n
 F
ra
c
ti
o
n
 o
f 
P
M

2 2 2 2 4

3
8

3
8

2
6

2
6

 
Figure 4:  Effect of fuel composition on black carbon (soot) particulate matter emissions. All four timings 

are shown for each fuel composition (L-R: 50% IHR at 0
o
, 5

o
, 10

o
, and 15

o
ATDC). 
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APPENDIX 1 
 
Extra Information Plots 
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Figure A1: Relationship between GID and fuel methane number (both relative to natural gas). N2 data 

points are shown separately, and are excluded from the regression fit. 
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Figure A2: Relationship between change in HRR and change in GID. N2 data points are shown 

separately, and are excluded from the regression fit through the remaining data. 
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Figure A3: Relationship between PM and fuel specific heat ratio, both relative to natural gas. All data 

points included in regression. 


