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ABSTRACT 

Transport provides a range of benefits to society in terms of mobility, access and economic 
growth. There are however negative impacts of transport, not least in terms of environmental 
degradation, damage to property, traffic accidents and loss of life. This paper focuses on road 
traffic accidents, the reduction of which is an important aim of transport policy world wide. The 
primary objective of this paper is to develop a series of relationships using spatially 
disaggregated area-level cross-sectional data between different traffic casualties, road traffic 
speed and road curvature by controlling for other contributing factors associated with area 
characteristics. The spatial units of the analysis are the 8019 census wards in England. Ward-
level casualty data are disaggregated by severity of the casualty (such as fatalities, serious 
injuries, and slight injuries) and by the severity of the casualty related to various road users.  

The results suggest that increased average speed within a ward is positively associated with 
total fatalities and serious injuries; and road curvature is found to be a protective factor.  

Key words: Transport safety; Area-wide road speed; curvature; spatial analysis; GIS  

1. INTRODUCTION 

Transport brings huge benefits to society, but it also has costs. The costs include not only the 

direct cost of providing transport services such as infrastructure, personnel and equipment costs 

but also the various indirect costs in terms of loss of life and property damage as a result of 

traffic accidents, travel delay due to traffic congestion and air pollution from road traffic. This 

paper focuses on road traffic accidents - a major cost of transport and an issue for transport 

planners, policy makers and traffic engineers worldwide. A reduction in road casualties is now 

an important aim of transport policy and as such it is essential to know what factors are 

responsible for road accidents before any efficient policy response can be identified. 

Much research has been conducted to identify the various factors affecting road casualties (see 

Shankar et al, 1995; Shefer and Rietveld, 1997; Abdel-Aty and Radwan, 2000; Ivan et al., 2000; 

Noland and Oh, 2004; Lord et al, 2005; Aguero-Valverde and Jovanis, 2006; and Kim et al. 



2 
 

2006). These factors are related to road infrastructure, traffic and socio-demographic 

characteristics, land use and the environment. Two important factors however have not been 

properly evaluated however in the literature, namely, the spatial impact of area-wide road speed 

and curvature on traffic accidents while controlling for other factors. It is normally hypothesised 

that a spatial area with higher average speed may be associated with higher fatalities and 

serious injuries and an area with lower average speed may be associated with higher slight 

injury accidents. The quantity of road curvature of a particular area (i.e., the quantity of curved 

roads) may also have an impact on traffic accidents within the area. These two factors will be 

investigated in this paper to identify how they contribute to counts of the number of road traffic 

casualties while controlling for other factors such as road length, socioeconomic variables and 

traffic flow.  

This paper attempts to employ Negative Binomial (NB) models to explore the various factors 

affecting road casualties in England using spatially disaggregated ward level cross-sectional 

data. Counts of the number of road traffic accidents within a particular spatial unit can be viewed 

as a function of various area-wide factors. This basic framework can be expressed as follows: 

 

Counts of accidents = f (traffic characteristics, socio-demographic, road infrastructure, and 
environment related factors) 

 

It is hypothesised that different area-wide factors affect different road casualties. Therefore, 

various types of casualty have to be estimated, such as fatalities, serious injuries, slight injuries, 

casualties related to motorised transport, non-motorised transport and vulnerable road users. 

The primary objective is to see how area-wide average speed and road curvature affect different 

types of road casualties while controlling for other factors such as road characteristics and 

socioeconomic variables.  

The paper is structured as follows. First, a summary of the relevant studies are provided; then a 

brief overview of the data used in the analysis is presented followed by a description of the 

statistical models used. The next section presents the results from different statistical models 
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and the associated discussions. Finally, conclusions are drawn and further research 

suggestions are presented. 

2. LITERATURE REVIEW 

In previous research road casualties have normally been measured in terms of the roadway, 

such as intersections or road segments or at different spatial boundaries such as counties, 

districts, traffic zones, zip codes or other census areas. The general approach has been to 

develop a relationship between road accidents and the contributing factors using various 

statistical models. Such a relationship has been developed at either individual road or area-level. 

A number of recent studies suggest that area-based models are more appropriate than 

individual road-based models since the former takes into account system-wide effects (Barker et 

al., 1999; Noland and Oh, 2004; Haynes et al., 2007). As such, in this paper, the focus is on the 

area-based accident models. 

Several researchers have investigated the relationship between speed and road accidents (see 

Shefer and Rietveld, 1997; Aljanahi et al. 1999; Ossiander and Cummings, 2002; Kockelman 

and Ma, 2007). These studies are often based on a disaggregated individual road-level speed. 

For example, Shefer and Rietveld (1997) proposed a hypothesis that the rate of road fatalities is 

strongly related to traffic density, speed and congestion, which is supported by empirical 

evidence such that the fatality rate is lower during the morning period compared to other times 

of the day.  Their findings are not conclusive since it has not been possible to identify which 

factors (speed, density, or congestion) play a more important role in reducing fatalities during 

the morning peak period. This is due to the fact that these three factors are inter-related. Other 

factors, such as poor night time visibility also need to be controlled for. Aljanahi et al. (1999) 

found that the number of accidents would reduce if the speed limit could be lowered. In some 

cases, the relationship between mean speed and the accident rate is significant. Generally 

accidents are more serious at higher speeds. They also suggest that speed variance also plays 

an important role. Ossiander and Cummings (2002) examined the change of the freeway speed 

limit in Washington State using time series data and found that an increased speed limit was 

associated with a higher fatality rate. The spatial differences in road speeds among various 
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spatial units however may affect road accidents. This has not been evaluated. A recent study by 

Kockelman and Ma (2007) examined the freeway speed and speed variation preceding crashes 

in California while controlling for other factors such as weather and lighting conditions, finding 

that there was no evidence that speed condition influences crash occurrence. This may be due 

to the data aggregation and crash-time reporting errors as suggested by the authors. Their 

study is also based on disaggregate road-level data. 

An analysis of road curvature (i.e., the quantity of curved roads in an area) and road casualties 

has been primarily studied by Milton and Mannering (1998) and Haynes et al (2007). Milton and 

Mannering (1998) developed such a relationship for the case of sections of highways and 

suggested that curved sections may not necessarily cause more traffic accidents. Haynes et al 

(2007) studied road curvature and its association with traffic crashes at the district level (a 

census area) in England and Wales. Their studies developed a number of measures for road 

curvature and found that at the district level road curvature is a protective factor meaning that 

more curved roads in an area results in less road accidents. Similar research based in New 

Zealand (Haynes et al., 2008), concludes that road curvature has an inverse relationship with 

fatal crashes on urban settings. 

Recent research has investigated the influence of other factors in spatial variations on road 

accidents (Miaou et al., 2003; Hadayeghi et al., 2003; Graham and Glaister. 2003; Ladron et al., 

2004; Noland and Oh, 2004; Noland and Quddus, 2004; Aguero-Valverde and Jovanis, 2006; 

Kim et al. 2006). These studies have focused on different types of road casualties, exploring 

various area-level explanatory factors such as land use, population, employment, road length, 

land-use mix, area deprivation (i.e., poverty), alcohol consumption (i.e., drink driving) and 

vehicle miles travelled (VMT). 

Washington et al. (1999) compared fatal crashes between southeastern and non-southeastern 

United States and concludes that regional difference exist due to, e.g. differences in seal-belt 

usage and speed limits. Hadayeghi et al. (2006) conducted an area-wide (traffic zones of the 

City of Tornoto) accident analysis to examine the temporal transferability of accident prediction 

models, in which various factors e.g. volume capacity (V/C) ratio, population, and road length 
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were considered. In their study, negative binomial models were used to examine effects of 

these factors at different time period (1996 vs. 2001). 

In terms of analysis at the spatially disaggregated ward (a census area) level based on data for 

England, Graham and Glaister (2003) found that urban scale, density and land-use mix affect 

pedestrian casualties. They used proxy variables namely proximate population and employment 

to take account of the impact of traffic flows. Noland and Quddus (2004) also conducted a 

spatially disaggregated ward level analysis finding that urbanised areas have fewer casualties 

while areas with higher employment or areas that are more deprived suffer more casualties. 

Roadway characteristics (such as types of roadway, junctions, and roundabouts) have little 

effects on traffic casualties, especially fatalities. Amoros et al. (2003) investigated road 

accidents among several areas in France in order to explore whether observed differences in 

traffic casualties can be explained by differences in road types and socioeconomic 

characteristics between countries. Kim et al. (2006) investigated the influence of land use, 

population, employment and economic activity on accidents based on a grid-based structure. 

Some recent examples of area-wide based road safety studies include: Delmelle and Thill 

(2008), who investigated young and adult bicycle crashes in the City of Buffalo, NY, based on 

“Census Tracts” level using stepwise ordinary least squares (OLS) regression analysis. Similarly 

a case study in Chicago undertaken by Thakuriah and Cottrill (2008) was also based on 

“Census Tracts” level. They examined pedestrian accident data using a Poisson regression 

model. Kar and Datta (2008) studied driver behaviour trying to identify areas with safety issues 

due to driver behaviour. They calculated Safety Performance Index (SPI) to examine and rank 

counties in the State of Arizona. 

Most of the studies on accident modelling employed a NB regression model to develop the 

relationship between area-wide traffic accidents and different contributing factors (Graham and 

Glaister, 2003; Amoros et al., 2003; Noland and Quddus, 2004; Haynes et al., 2007). Recent 

studies however have developed a relationship between area-wide traffic accidents and various 

contributing factors using a spatial econometric approach to address the issues of unmeasured 

spatial correlation among neighbouring spatial units. For instance, Miaou et al. (2003) reviewed 

methods used in existing studies on disease mapping and pointed out how such methods could 
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be employed in accident research. MacNab (2004) demonstrated how Bayesian hierarchical 

modelling could be applied to area-based accident analysis. Most recently Aguero-Valverde and 

Jovanis (2006) have compared Full Bayes (FB) hierarchical models with negative binomial 

models in a spatial analysis of road casualties using county-level cross-sectional time-series 

data in Pennsylvania, finding that they are generally consistent with each other if analysing fatal 

crash rates. They suggest however that spatial correlation should be taken into account in order 

to analyse non-fatal injuries. Their results suggest that both fatal and injury crash rates 

decrease with the increase in vehicle miles travelled (VMT) and that area deprivation is 

positively associated with fatal crash rates. 

In this paper we do not employ spatial econometric models as above, but will be taking into 

account such spatial effects by introducing a proxy variable within the NB model. 

3. DATA DESCRIPTION 

The spatial units of this analysis are census wards of England based on the UK Census 2001. 

There are a total of 8,019 spatial units though we only have data for 7,969 wards. The GIS data 

of such ward boundaries were obtained from the EDINA UKBORDERS datasets and the 

STATS19 UK national road accident database was employed to obtain disaggregated accident 

data. Ward-level total road casualties of different categories were then calculated from this 

disaggregated accident data using a GIS package, MapInfo. Road casualties on ward 

boundaries were assigned to wards randomly1. In order to avoid a lot of wards with zero 

accident counts, especially for the case of fatal accidents,, STATS19 data for 2000 to 2002 

were aggregated. Road characteristics such as total lengths of motorways, A-roads, B-roads 

and minor roads were obtained from UK Ordnance Survey (OS). The total number of nodes 

(mainly junctions) and roundabouts were also obtained from the same source. Socioeconomic 

data were obtained from the UK census 2001, and ward-level average road speed and traffic 

volume data were obtained from Graham and Glaister (see Graham and Glaister, 2006) who 

estimated these variables at the ward level from the traffic demand data (for the year 2000) 

                                                      
1 This is due to positioning errors in both accident location and ward boundary spatial data. 
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supplied by the UK Department for Transport (DfT). Graham and Glaister (2006) were employed 

speed-flow relationships (adjusting for road type and area type) and were then applied to flow 

data for spot locations and the resulting estimates of speed were extrapolated to wards based 

on their region, area type and road composition. It should be noted that this process involved 

considerable weighted averaging to produce estimates of average traffic speeds for wards. No 

external validation of the average road speed data is carried out as reference road speed data 

are not available to the authors.  

Due to the movement of traffic between neighbouring wards, traffic from neighbouring wards is 

considered when calculating total traffic activities for a particular ward. This results in total traffic 

activities (TTA) for each ward. TTA is considered a better measure than the actual traffic volume 

in a ward in this analysis as TTA can take account of traffic activities from other wards so it 

serves as a better exposure to potential risk. TTA for a particular ward is calculated from the 

model suggested by Graham and Glaister (2003). This is presented below.  
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where iTV  is the traffic volume of ward i , jTV is the traffic volume of ward j , ijd is the centre-

to-centre distance between wards i  and j , and N  is the total number of wards. Traffic volume 

is measured in passenger car units (PCU). 

In order to examine the effect of road curvature on road casualties, we employed the following 

equation developed by Haynes et al (2007) to calculate ward-level road curvature. This is 

known as bend density (BD): 
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where iSP  is the total shape points (i.e., vertices) of all roads within a ward i , in is the total 

number of nodes (junctions and end points of roads) of ward i , and iL  is the total length of all 

roads of ward i . 
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Summary statistics for the data used in the analysis are presented in Table 1, which gives a list 

of variables used in the model. Mean, standard deviation (S.D.), minimum and maximum values 

of each variable are also presented.   

Insert table 1 here 

 

As can be seen in Table 1, there are 20 independent variables, and 9 of them are dummy 

variables representing the nine regions of England. Motorways, A roads, B roads and minor 

roads are four types of roads in England. Motorways and A roads carry relatively high traffic 

volumes when compared to B roads and minor roads. Considering that the sizes of wards vary 

so road length could be inappropriate to represent the road network condition in a ward, as such 

we transform the road length to road length densities to account for this. 

Due to data unavailability, environmental factors were not included. 

It is noticeable from Table 1 that variables associated with road casualty and road infrastructure 

have a minimum value of 0 (except bend density) meaning that there were no accidents or no 

existence of a particular type of road.  The “bend density” variable has 7968 observations 

instead of 7969 observations as other variables, which is because one ward (Clovelly Bay in 

South West) was reported as having 0 total road length according to our data. To calculate bend 

density, the total length of road cannot be 0 according to equation (2), so to solve this problem 

this observation has to be eliminated from our sample. 

There is a large variation in the average speed among the wards with the mean traffic speed of 

49.2 km/h for all wards, a minimum speed of 9.4 km/h (a ward from the central London) and the 

maximum speed is 104.8 km/h (a ward from the North West of England). The spatial distribution 

of area-wide average traffic speed and road curvature is shown in Figures 1 and 2 for part of 

England including the London area. As can be seen from Figure 1, as expected wards within an 

urban area (e.g., London in this case) have relatively low average speed compared with wards 

within a rural area.  

Insert figures 1 and 2 here 
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Figure 2 suggest some important characteristics in our road density data. One would expect that 

roads within an urban area are straighter than those of a rural area. However, Figure 2 does not 

support this hypothesis as bend density of wards within a rural area are less than that of wards 

within an urban area. The measure of bend density however (see equation 2) largely depends 

on the amount of total road vertices that subsequently depends on the way a road network was 

digitised.  

Three road user types are categorized to be examined as follows: 

• Motorised transport (MT): such as occupants of motorised vehicles of cars, trucks, buses, 

and trams (no motorcycle). 

• Non-Motorised Transport (NMT): Cyclists, horse riders and pedestrians. 

• Vulnerable Road Users’ (VRUs): Pedestrians, cyclists, motorcyclists and horse riders. 

An initial analysis of data was also conducted to see whether there is a specific relationship 

between road casualties and other contributing factors. For instance, Figure 3 shows a linear 

association between total traffic casualties and total traffic activity.  

Insert figure 3 here 

 

 Such positive relationships illustrated in Figure 3 are expected as total traffic activity is 

regarded as one of the main exposures to potential risks of accidents. Although the literature 

indicates that there is a strong relationship between traffic speed and fatal accidents (Ossiander 

and Cummings, 2002), we do not find a clear linear relationship between accidents and speed 

as shown in Figure 4. This may be due to the fact that other factors affecting traffic accidents 

need to be taken into account while developing a relationship between traffic accidents and road 

speed.  

 

Insert figure 4 here 
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4. STATISTICAL MODEL 

Road traffic accident data are classified as “count data” for which Negative Binomial (NB) 

regression models are more appropriate (e.g., Shankar et al, 1995; Milton and Mannering, 1998; 

Abdel-Aty and Radwan, 2000; Lord, 2000;  Ivan et al., 2000). The generalised linear relationship 

between the expected accident counts iμ  and the explanatory variables iX can be expressed 

as follows: 

                                0ln( )i i iμ β ε= + +βX                                                                   (3)
 

where β is the vector of coefficient of explanatory variables to be estimated; and ε is a random 

term.  

As stated in section 2 NB models are not capable of accounting for the spatial correlation (due 

to the variations in topography and weather conditions) among wards. Aguero-Valverde and 

Jovanis (2006) employed a full Bayesian hierarchical model and found the existence of spatial 

dependence among spatial units for the case of injury accidents. To address the unobserved 

regional variations (e.g. topography and weather due to data unavailability) within England, we 

employed an alternative and less complex approach. This was to add a series of dummy 

variables representing different regions of England (Figure 5) into the NB models. England is 

divided into 9 statistical regions:  London, South East, South West, Eastern, West Midlands, 

East Midlands, North East, North West and Yorkshire. It should be noted that the 9 standard 

regions may not be the best approach to divide England into regions with similar topography 

and weather conditions. This option is the most convenient however, and we assume the wards 

within each region have similar topography and weather characteristics.  

 

Insert figure 5 here 

5. RESULTS AND DISCUSSION 

Our primary objective has been to develop the relationship between area-wide (ward-level) road 

casualties and the main contributing factors such as average speed and road curvature while 
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controlling for other factors. Due to a large variation among the values of the explanatory 

variables, some of the variables such as total traffic activities (TTA), population and employment 

have been transformed into a logarithmic scale. This allows for ease of interpretation of the 

coefficients of these variables. The coefficients of log-transformed variables are the elasticities 

of casualties with respect to these variables. To reduce the effect of heteroscedasticity which is 

normally present in a cross-sectional dataset, robust standard errors have been used to 

estimate t-statistics for all parameters in all the models. The correlation coefficient of each pair 

of independent variables is also tested and the result suggests that the independent variables 

are not correlated to each other as the highest correlation coefficient was found to be 0.63 

between Log(Population) and Log(Employment). This suggests that multicollinearity is not a 

problem in our data. 

A series of NB models were estimated for fatalities, serious injuries, and slight injuries 

associated with total casualties (Table 2), motorised transport (Table 3), non-motorised 

transport (Table 4) and vulnerable road users (Table 5). The overdispersion parameter is found 

to be statistically and significantly different from zero (at the 95% confidence level) in all models 

suggesting that the NB models are superior to the Poisson models for the data we have used. 

The likelihood ratio that is a measure of the goodness-of-fit ranges from 0.1 to 0.21 in the NB 

models estimated in this study. These values are consistent with other likelihood ratios of NB 

models found in the literature (e.g., Abdel-Aty and Radwan, 2000; Noland and Quddus, 2004). 

The majority of variables in the fatality models were found to be statistically significant except 

roundabouts and the log of population (Table 2) although average speed is significant at the 

90% confidence level only. In the serious injury model, nodes and average speed become 

statistically insignificant variables, and in the slight injury model, all variables are found 

statistically significant except one spatial variable. As for spatial variations, all dummy variables 

were found to be statistically significant except for the North West in the slight injury model 

suggesting that it is essential to control for spatial variation among wards.  

Insert tables 2 and 3 here 
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Compared to the results presented in Table 2, the number of statistically significant variables is 

relatively less in the models presented in Table 3 for road casualties associated with motorised 

transport.  This confirms our initial hypothesis that the area-wide factors affecting different types 

of accidents are different. The statistically insignificant variables in the motorised fatality model 

are B-road density, nodes, roundabouts, and average speed. In the motorised serious injury 

model, the only insignificant variable is nodes whereas in the motorised slight injury model, the 

only insignificant variable is minor road density.  

The results for NMT fatalities, serious injuries and slight injuries are presented in Table 4. 

Motorway density becomes statistically insignificant in all three NMT models. A number of 

factors including average speed and curvature become statistically insignificant in the NMT 

fatality model. Roundabouts becomes insignificant in the NMT serious injury model and road 

curvature is found to be insignificant in the slight injury model.  

 

Insert table 4 here 

 

The last series of NB models were estimated for casualties related to vulnerable road users 

(VRUs). This kind of road users are considered more ‘vulnerable’ compared to motorized 

transport due to different physical conditions. The results for VRUs fatalities, serious injuries and 

slight injuries are presented in Table 5. As expected, the set of significant variables across all 

models are different from the set of significant variables presented in Tables 2, 3, and 4.  

 

Insert table 5 here 

 

As revealed from Tables 2, 3, 4, and 5 different ward-level factors affect road casualties 

differently. This is an expected result and in the following paragraphs, we interpret the impact of 

various explanatory variables on ward-level road casualties.    
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5.1 Average Traffic Speed  

Our expectation is that average speed should have an impact on road casualties while we 

controlling for other factors.  

Average speed is found to be statistically significant and positively associated with total fatalities. 

This confirms our study hypothesis. The mean elasticities2 of total fatalities with respect to 

average speed are found to be 0.095 meaning that a 1% increase in average speed of a ward 

would increase fatalities by 0.095% all other factors remaining the same. Average speed is 

found to be statistically significant and negatively associated with total slight injuries. The mean 

elasticity of slight injuries with respect to traffic speed is -0.074 suggesting that a 1% increase in 

average speed would decrease slight injuries by 0.07%. This result indicates that speed has a 

different effect on different types of road casualties. 

Disaggregated by accident types, for the case of MT, average speed is found to be significant in 

the serious injury model (with a positive coefficient) and slight injury model (with a negative 

coefficient). This is reasonable as serious injuries are often associated with motorized transport. 

Surprisingly, this variable is found to be insignificant in the MT fatality model. This is because 

there are fewer MT related ward-level fatal accidents as the average fatalities for all wards is 

only 0.6. Most of the variations in MT fatalities are explained by other factors such as road 

infrastructure, socioeconomic, and traffic activities factors. For the case of NMT and VRUs, 

average speed is found to be statistically significant with a negative coefficient in both the 

serious injury and slight injury models. This means that wards with lower average speed have 

more slight and serious injuries. This is an expected result. This is because one would expect 

that low traffic speed indicates a high level of traffic congestion that results in more injury 

accidents. Average speed is found to be insignificant in the NMT fatality and VRUs fatality 

models. 

Therefore, it can be said that the ward-level average speed does have an effect on traffic 

casualties while controlling for other contributing factors such as traffic activities, road 
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characteristics, and socioeconomic variables. Generally speed has an inverse relationship with 

slight injuries, which is reasonable as higher speed often means less congestion, i.e. less traffic 

volume; and hence it would be more likely to result in more serious, especially motorised 

injuries as indicated in our results. 

Compared to previous studies, our results support that higher speed is associated with more 

serious road casualties (e.g. Aljanahi et al. 1999; Ossiander and Cummings 2002). We also 

have revealed it is more often the motorized transport related serious road casualties. Previous 

studies however mainly investigated the speed limit, which is not completely equivalent to 

average speed as in our study. Aljanahi et al. (1999) and Ossiander and Cummings (2002) 

suggested that it is necessary to investigate speed variance to see how it relates to road 

casualties. Due to data unavailability, we did not look at speed variance. Therefore further 

studies needs to be done on this issue to fully understand the relationship between speed and 

road casualties. 

5.2 Road Curvature 

Road curvature in our study is calculated by total shape points (i.e., intermediate points of a 

road segment determining the degree of curvature of the segment) of a ward from all road 

segments divided by the total length of all roads within the ward. This is termed the bend density 

of a ward. A ward with a high value of bend density suggests that the ward has relatively more 

curved roads. Haynes et al. (2007) used this variable and found that at a district-level (a census 

area that is much bigger than a ward) bend density negatively affects road traffic casualties. Our 

aim was also to re-investigate this using ward data while controlling for other factors such as 

traffic volume, traffic speed, road types, and other socioeconomic factors.  

In all models considered in this study except NMT & VRU fatality models, road curvature is 

found to be statistically significant with a negative coefficient. This finding is in-line with the 

finding by Haynes et al. (2007) and also confirms our hypothesis. This may be because drivers 

                                                                                                                                                            

2 Mean elasticity is defined as 
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would be more aware of the road conditions present in a curved road. An evidence of this is that 

drivers usually drive more carefully through residential and commercial areas, where the roads 

are often more curved as indicated in Figure 2. Another possible reason is that, increased bend 

density could be caused by fewer side roads, which would reduce the risk of potential conflicts 

and consequently crashes. Notice that the value of the coefficient for this variable is consistently 

and relatively high compared with the values of other covariates included in the models. This is 

because the value of road curvature is relatively low with a mean value of 0.025. 

Therefore, it can be said that more curved roads within a ward can be considered as a 

protective factor regarding road safety for the case of our data. However recent study (Haynes 

et al., 2008) using similar methods applied in New Zealand does not completely confirm our 

results here: road curvature (including bend density and the other 3 measures) is significantly 

negatively related to fatal crashes on urban roads. This is not always true in rural areas. It is 

clear that data sources from a different country will result in different conclusions due to different 

road networks, demographic and topographical conditions. Furthermore, as the author 

suggested, there are four road curvature measures and they are not necessarily consistent with 

each other, suggesting that one measure may not be sufficient to reveal the road curvature 

nature. Clearly, more research should be done on this area. 

5.3 Other Contributing Factors 

Road density (i.e., the total length of road within a ward per square km area of the ward) of 

different roads (motorway, A road, B road, minor road) was taken as an explanatory variable in 

all models to see whether it had any influence on road casualties. Other road infrastructure 

variables were the total number of nodes and roundabouts within a ward. It is reasonable to 

assume that a ward with higher road density has more opportunity for accidents to happen as 

road users are exposed to potential dangers along the road. Our results support this hypothesis.  

A and B road densities are always found to be statistically significant at the 95% confidence 

level in all models considered in this study, with the exception in the motorised fatality model 

where B road density is not statistically significant (see Tables 2, 3, 4, and 5). These variables 
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are positively related with road casualties suggesting that wards with larger A and B road 

densities have more road casualties of any category and vice versa.  

Motorway density is statistically significant in all models related to total traffic casualties (Table 2) 

and motorised casualties (Table 3). Similar to A road and B road densities, the relationship 

between motorway density and these casualties is positive. This is because motorways are 

mainly used by MT and wards with a high density motorway normally have high severity 

casualties. This variable is found to be statistically insignificant in all models related to NMT and 

VRUs casualties. This is an expected result as pedestrians, cyclists, and horse riders do not use 

motorways.  

Minor road density reveals a mixed result. This variable is found to be statistically significant 

with a positive coefficient in the total serious injury, total slight injury, NMT serious injury, NMT 

slight injury, VRUs serious injury and VRUs slight injury models. It is statistically significant with 

a negative coefficient in the total fatality, MT fatality, and MT serious injury models. This variable 

is statistically insignificant in the NMT fatality and VRUs fatality models. Generally, minor road 

density has a negative relationship with fatalities suggesting that fewer fatalities occur on minor 

roads compared to other types of roads. Drivers on minor roads are more aware of 

circumstances as these roads are often located at residential or shopping areas with a 30mph 

speed limit. However, serious injuries and slight injuries associated with NMT and VRUs are 

more common in minor roads compared with other types of roads. 

Roundabouts are known to cause fewer traffic accidents compared with traditional junctions 

(Hels and Orozova-Bekkevold, 2007). To investigate this, the total number of roundabouts 

within a ward was included in all models. In most of the models, this variable was found to be 

statistically insignificant. This may be due to the fact that we do not have data on whether a 

roundabout is signalised or un-signalised. Previous research suggests that signalised 

roundabouts are safer than unsignalised roundabouts (De Brabander and Vereeck, 2007). Our 

results suggest that wards with a high number of roundabouts have higher casualties 

associated with MT (see Table 3) and lower slight injuries associated with both NMT (Table 4) 

and VRUs (Table 5).  
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In our study, nodes consist of both junctions and end points (cul-de-sac) of roads. Junctions are 

normally known as accident hotspots and on the other hand, accidents may not happen at the 

end point of a road (i.e., cul-de-sac). Since we do not have data for junctions, nodes within a 

ward are included in all models as a proxy measure for junctions.  Our results suggest that this 

variable is statistically significant with a positive coefficient in most models. This means that 

wards with a high number of junctions have more casualties. This variable however is found to 

be insignificant in the total serious injury, MT fatality and serious injury, NMT fatality models. 

Our results would be more conclusive if we had data available on whether a particular junction 

is signalised or unsignalised.  

Total traffic activity (in PCU) is an indicator of traffic activity within each ward in our model. We 

calculated an equivalent traffic volume for a particular ward by taking into account traffic volume 

from surrounding wards. This is known as total traffic activity (TTA) of a ward and as with road 

density. TTA is regarded as exposure to potential risks for road users. Therefore, our 

expectation is that wards with high TTA would have high traffic casualties. Our results suggest 

that TTA is statistically significant at 95% confidence level and positively associated with road 

casualties in most models (see Table 2, 3, 4, and 5). The only exception is in the NMT slight 

injury model where it is found to be statistically insignificant. This confirms that increased TTA 

would generally produce more casualties. Surprisingly, we found a strong negative association 

between TTA and NMT slight injuries (95% confidence level). This is an unexpected result.  

Socioeconomic factors such as population and employment are included in all models 

considered in our study to see whether they affect road casualties. Our expectation is that both 

variables should have positive associations with casualties because these factors reflect the 

level of activity within a ward. The results are consistent with our expectation.  

Population and employment are found to be statistically significant with a positive coefficient in 

all models, with the exception in the total fatalities model where population is not significant (see 

Tables 2, 3, 4, and 5). This result is consistent with the findings of Noland and Quddus (2004). 

We also found that the relationship between population/employment and MT slight injuries is 

particularly strong compared to MT fatalities and serious injuries. One shortcoming of this 
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analysis is that it does not consider other important socioeconomic factors, such as age cohorts, 

gender, alcohol consumption, and seat-belt usage. This is due to the unavailability of the data.  

Spatial variations were examined by using a series of dummy variables representing the 9 

regions in England. In the models, dummy variable for Yorkshire was taken as a reference case. 

The purpose of these dummy variables is to take into account unobserved variations in 

topography, weather conditions and land use types. The results confirm the existence of a 

regional effect in our data. For example, the differential coefficient for London is found to be 

0.19 in the VRUs slight injury model suggesting that there are about 0.19 more slight injuries in 

the London region compared with the Yorkshire region.  

6. CONCLUSIONS 

This paper has investigated the factors affecting area-level (an England census ward - Ward) 

traffic casualties using a non-spatial negative binomial (NB) regression model. Ward-level traffic 

casualty data has been disaggregated by the severity of the casualty such as fatalities, serious 

injuries, slight injuries and by severity of the casualty related to various road users such as 

motorised transport (MT), non-motorised transport (NMT), and vulnerable road users (VRUs). A 

series of NB models have been developed for each category of casualty and the effects of 

spatial variation among wards controlled to some extent by introducing a series of dummy 

variables related to the nine regions of England. We have been particularly interested to see 

whether ward-level traffic speed and road curvature had any effect on various types of 

casualties. Our results suggest that increased average speed within a ward is positively 

associated with total fatalities and MT serious injuries of the ward. For all other categories of 

casualty, average speed was either insignificant or significant but negatively associated with 

serious and slight injury casualties of NMT and VRUs. Since wards with a low average speed 

are normally located in urban areas where traffic congestion is a common issue, the negative 

association between speed and slight injury casualties could be justified. However, the negative 

association between speed and serious injuries could not be rationalised. Road curvature was 

statistically significant in most models (except NMT fatality and VRU fatality models) and 
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negatively associated with casualties.  This suggests that wards with more curved roads have 

fewer casualties. The results associated with the controlling factors such as road infrastructure 

(e.g., road length, junctions, roundabouts) and socioeconomic variables (e.g., population and 

employment) were also found to be coherent in all models.  

 

Due to the unavailability of data we were not able to examine other important factors such as 

weather conditions (e.g. annual rainfall), signalised and unsignalised junctions and roundabouts, 

and socioeconomic factors (e.g. age cohorts, alcohol consumption, and seat-belt usage). 

Further research is required in order to address these issues to provide more proper results.  It 

would also be interesting to see how the results would change when a spatial model (similar to 

the model employed by MacNab, 2004; and Aguero-Valverde and Jovanis, 2006) is applied to 

the data.    
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Table 1 Summary statistics of variables used in the models 
Variables N Mean S.D. Minimum Maximum
Dependent variables
Total fatalities 7969 1.10039 1.56244 0 15
Total serious injuries 7969 12.04919 11.84616 0 236
Total slight injuries 7969 91.17054 97.83176 0 1746
Total motorized casualties 7969 74.43305 78.51608 0 1400
Total non motorized casualties 7969 19.89196 29.66699 0 856
Total vulnerable road users' casualties 7969 29.82758 40.81776 0 1276
Motorized fatalities 7969 0.59091 1.16025 0 14
Motorized serious injuries 7969 6.21308 6.92554 0 119
Motorized slight injuries 7969 67.62906 73.48241 0 1321
Non motorized fatalities 7969 0.31208 0.66587 0 10
Non motorized serious injuries 7969 3.53018 5.32685 0 136
Non motorized slight injuries 7969 16.04969 24.52243 0 721
VRU fatalities 7969 0.50847 0.86033 0 10
VRU serious injuries 7969 5.82432 7.11361 0 186
VRU slight injuries 7969 23.49479 34.06918 0 1080

Road Infrastructure
Motorway length (m) per km2 of area 7969 37.27122 145.95970 0 1893.925
A road length (m) per km2 of area 7969 592.55800 667.03400 0 10028.53
B road length (m) per km2 of area 7969 278.88830 403.96990 0 3962.742
Minor road length (m) per km2 of area 7969 4327.10200 3387.20200 0 24033.95
Number of roundabouts 7969 1.38324 2.26095 0 78
Number of nodes 7969 90.92195 58.13864 0 933
Bend density (Curvature m-1) 7968 0.02520 0.00694 0.00140 0.05356

Traffic Characteristics
Total traffic activity (pcu) 7969 8063495 6127939 397288.3 6.49E+07
Average speed (km/h) 7969 49.24543 21.19803 9.413134 104.7612

Demographic Characteristics
Resident population 7969 6166.248 4118.081 106 35102
Employment 7969 2783.106 5682.174 8 173127

Spatial Variations
London 7969 0.07943 0.27043 0 1
South East 7969 0.18810 0.39082 0 1
South West 7969 0.13678 0.34364 0 1
Eastern 7969 0.14029 0.34731 0 1
West Midlands 7969 0.09550 0.29392 0 1
East Midlands 7969 0.11055 0.31360 0 1
North East 7969 0.06086 0.23909 0 1
North West 7969 0.12624 0.33214 0 1
Yorkshire 7969 0.06224 0.24161 0 1  
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Figure 1 Spatial distribution of ward-level average road speed  
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Figure 2 Spatial distribution of ward-level bend density  
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             (a) Fatalities and serious injuries                       3(b) Slight injuries 

 

Figure 3 Relationships between traffic casualties and total traffic activity 
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  (a) Fatalities and serious injuries    (b) Slight injuries 

    

    Figure 4 Traffic causalities and averaged speed 
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Figure 5 Nine statistical regions of England 
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Table 2 Estimation results of NB models for total road casualties 

Explanatory Variables Coeff t‐Stat Coeff t‐Stat Coeff t‐Stat
Roadway Infrastructure
Motorway length (m) per km2 of area 0.00027 3.22 0.00025 4.85 0.00054 10.81
A road length (m) per km2 of area 0.00014 4.87 0.00009 6.48 0.00013 11.93
B road length (m) per km2 of area 0.00017 4.34 0.00016 9.41 0.00013 9.83
Minor road length (m) per km2 of area -0.00006 -7.51 0.00001 1.86 0.00001 5.75
Number of roundabouts 0.00260 0.5 0.01885 5.23 0.02138 6.17
Number of nodes 0.00066 2.02 -0.00003 -0.21 0.00036 2.35
Bend density (Curvature m-1) -21.83962 -6.24 -17.12301 -10.51 -12.47388 -9.22
Traffic Characteristics
Log(Total traffic activity in pcu) 0.74514 20.65 0.60460 34.64 0.53487 35.59
Average speed (km/h) 0.00193 1.76 0.00076 1.43 -0.00149 -3.15
Demographic Characteristics
Log(Resident population) 0.03912 0.98 0.13865 7.67 0.29618 15.74
Log(Employment) 0.13358 6.65 0.18809 20.5 0.24202 30.47
Spatial Variations
London -0.14447 -1.82 0.08398 2.24 -0.08532 -2.67
South East -0.27445 -4.4 -0.28936 -9.95 -0.11182 -4.55
South West -0.43228 -6.52 -0.60399 -19.57 -0.23054 -9.15
Eastern -0.28505 -4.36 -0.25424 -8.11 -0.12203 -4.48
West Midlands -0.20828 -3.14 -0.36404 -11.31 -0.14051 -5.24
East Midlands -0.10451 -1.6 -0.21969 -6.92 -0.08943 -3.34
North East -0.36870 -4.29 -0.53948 -14.66 -0.07199 -2.34
North West -0.23874 -3.98 -0.26903 -9.39 0.03419 1.42
Yorkshire (Reference case) - - - - - -
Constant -12.41604 -21.67 -9.22968 -33.09 -8.19959 -33.09
Overdispersion parameter 0.31641 14.60 0.18302 37.17 0.17572 51.31
Descriptive Statistics
Number of observations
Log-pseudolikelihoodlikelihood (at conver
Log-likelihood ratio index

7968
-37926.133

0.13244
-10237.276

0.11610 0.14199

7968

Slight InjuriesFatalities Serious Injuries

7968
-23908.344
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Table 3 Estimation results of NB models for Motorised Transport (MT) casualties 

Explanatory Variables Coeff t‐Stat Coeff t‐Stat Coeff t‐Stat
Roadway Infrastructure
Motorway length (m) per km2 of area 0.00057 5.03 0.00049 6.7 0.00068 12
A road length (m) per km2 of area 0.00010 1.92 0.00004 2.17 0.00011 8.48
B road length (m) per km2 of area 0.00011 1.53 0.00014 5.68 0.00012 8.01
Minor road length (m) per km2 of area ‐0.00013 ‐9.66 ‐0.00004 ‐9.43 ‐0.000002 ‐0.63
Number of roundabouts 0.00584 0.69 0.03114 6.43 0.03016 7.17
Number of nodes 0.00007 0.15 ‐0.00010 ‐0.44 0.00045 2.57
Bend density (Curvature m-1) ‐34.93094 ‐6.42 ‐24.38828 ‐10.48 ‐15.27546 ‐10.28
Traffic Characteristics
Log(Total traffic activity in pcu) 0.79652 15.86 0.73498 31.2 0.62114 37.17
Average speed (km/h) 0.00124 0.84 0.00175 2.48 ‐0.00115 ‐2.17
Demographic Characteristics
Log(Resident population) 0.11716 2.08 0.08703 3.71 0.28395 16.12
Log(Employment) 0.06791 2.19 0.11318 8.99 0.20169 23.99
Spatial Variations
London ‐0.39698 ‐3.08 0.30201 5.77 ‐0.21253 ‐5.71
South East ‐0.34755 ‐4.03 ‐0.26849 ‐6.5 ‐0.13664 ‐4.75
South West ‐0.39749 ‐4.39 ‐0.65228 ‐15.12 ‐0.28743 ‐9.82
Eastern ‐0.30072 ‐3.38 ‐0.24792 ‐5.67 ‐0.12724 ‐4.03
West Midlands ‐0.12406 ‐1.37 ‐0.32878 ‐7.47 ‐0.13458 ‐4.37
East Midlands ‐0.10336 ‐1.15 ‐0.19906 ‐4.56 ‐0.08922 ‐2.83
North East ‐0.38030 ‐3.02 ‐0.59325 ‐11.03 ‐0.02413 ‐0.69
North West ‐0.25998 ‐2.98 ‐0.30681 ‐7.38 0.08844 3.1
Yorkshire (Reference case) - - - - - -
Constant ‐13.38587 ‐16.77 ‐10.66150 ‐28.24 ‐9.32095 ‐33.76
Overdispersion parameter 0.65108 13.81 0.31321 33.72 0.22035 51.94
Descriptive Statistics
Number of observations
Log-pseudolikelihoodlikelihood (at convergence)
Log-likelihood ratio index

-7189.9682 -20156.679 -36392.923
0.12694 0.12849 0.12126

7968 7968 7968

Fatalities Serious Injuries Slight Injuries
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Table 4 Estimation results of NB models for Non-Motorised Transport (NMT) casualties 

Explanatory Variables Coeff t‐Stat Coeff t‐Stat Coeff t‐Stat
Roadway Infrastructure
Motorway length (m) per km2 of area ‐0.00003 ‐0.25 0.00001 0.16 0.00005 1.14
A road length (m) per km2 of area 0.00017 4.66 0.00017 9.9 0.00020 14.46
B road length (m) per km2 of area 0.00013 2.47 0.00010 4.93 0.00007 4.25
Minor road length (m) per km2 of area 0.00001 1.24 0.00005 11.78 0.00005 13.48
Number of roundabouts ‐0.00764 ‐1.01 ‐0.00009 ‐0.03 ‐0.00677 ‐2.42
Number of nodes 0.00065 1.47 0.00073 3.4 0.00144 6.5
Bend density (Curvature m-1) ‐2.36989 ‐0.44 ‐6.43234 ‐2.92 ‐2.78802 ‐1.33
Traffic Characteristics
Log(Total traffic activity in pcu) 0.47362 7.3 0.08544 3.15 ‐0.08758 ‐3.96
Average speed (km/h) 0.00013 0.06 ‐0.00508 ‐6.1 ‐0.00617 ‐9.58
Demographic Characteristics
Log(Resident population) 0.28388 3.85 0.51485 12.94 0.62303 12.52
Log(Employment) 0.27163 8.9 0.33778 26 0.39024 30.77
Spatial Variations
London ‐0.16418 ‐1.39 ‐0.09189 ‐1.94 0.00298 0.08
South East ‐0.20721 ‐2.09 ‐0.24071 ‐5.91 ‐0.04249 ‐1.25
South West ‐0.37371 ‐3.52 ‐0.44538 ‐9.93 ‐0.01091 ‐0.3
Eastern ‐0.24301 ‐2.24 ‐0.16102 ‐3.75 ‐0.06202 ‐1.73
West Midlands ‐0.21759 ‐2.07 ‐0.19152 ‐4.57 ‐0.04645 ‐1.34
East Midlands ‐0.16489 ‐1.49 ‐0.14293 ‐3.15 ‐0.05190 ‐1.48
North East ‐0.18153 ‐1.46 ‐0.25488 ‐5.19 ‐0.06717 ‐1.61
North West ‐0.10494 ‐1.15 ‐0.06560 ‐1.77 0.00572 0.18
Yorkshire (Reference case) - - - - - -
Constant ‐13.24564 ‐13.71 ‐7.16825 ‐18.28 ‐4.58751 ‐14.78
Overdispersion parameter 0.24681 4.82 0.16264 20.48 0.16912 27.83
Descriptive Statistics
Number of observations
Log-pseudolikelihoodlikelihood (at convergence)
Log-likelihood ratio index

-5118.9574 -15172.721 -23889.855
0.10713 0.20184 0.21041

7968 7968 7968

Fatalities Serious Injuries Slight Injuries
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Table 5 Estimation results of NB models for Vulnerable Road Users’ (VRUs) casualties 

Explanatory Variables Coeff t‐Stat Coeff t‐Stat Coeff t‐Stat
Roadway Infrastructure
Motorway length (m) per km2 of area 0.00001 0.07 0.00001 0.29 0.00007 1.93
A road length (m) per km2 of area 0.00014 4.34 0.00014 9.17 0.00019 15.08
B road length (m) per km2 of area 0.00017 4.02 0.00015 8.18 0.00010 7.02
Minor road length (m) per km2 of area -0.00001 -1.28 0.00003 10.38 0.00004 13.87
Number of roundabouts 0.00218 0.35 0.00629 2 0.00094 0.36
Number of nodes 0.00075 1.99 0.00016 0.91 0.00078 4.35
Bend density (Curvature m-1) -6.83588 -1.56 -7.88022 -4.53 -3.99239 -2.34
Traffic Characteristics
Log(Total traffic activity in pcu) 0.63230 13.27 0.37757 18.26 0.12627 7.13
Average speed (km/h) 0.00119 0.83 -0.00154 -2.53 -0.00438 -8.57
Demographic Characteristics
Log(Resident population) 0.10025 1.89 0.28326 12.11 0.49352 14.49
Log(Employment) 0.18884 7.54 0.26519 25.31 0.34756 33.33
Spatial Variations
London -0.02836 -0.3 -0.05725 -1.38 0.19482 5.4
South East -0.18247 -2.33 -0.26722 -7.98 -0.00060 -0.02
South West -0.43250 -5.17 -0.51634 -14.44 -0.01619 -0.53
Eastern -0.27690 -3.31 -0.22597 -6.38 -0.06107 -1.97
West Midlands -0.29862 -3.52 -0.34750 -9.57 -0.11425 -3.71
East Midlands -0.10722 -1.28 -0.21580 -5.76 -0.04666 -1.53
North East -0.33913 -3.3 -0.47682 -11.21 -0.21076 -5.73
North West -0.17135 -2.28 -0.20030 -6.29 -0.05070 -1.86
Yorkshire (Reference case) - - - - - -
Constant -12.86117 -17.2 -8.53186 -26.92 -6.03680 -22.67
Overdispersion parameter 0.21843 6.63 0.16185 25.98 0.15070 34.33
Descriptive Statistics
Number of observations
Log-pseudolikelihoodlikelihood (at convergence)
Log-likelihood ratio index

Fatalities Serious Injuries Slight Injuries

0.09705 0.16550 0.19788

7968 7968 7968
-6933.2545 -18855.44 -26701.985

 
 

 


