figshare
Browse
2012AzamMphd.pdf (8.29 MB)

The Electrochemistry of Ag in Deep Eutectic Solvents

Download (8.29 MB)
thesis
posted on 2012-07-31, 15:49 authored by Muhammad Azam
A fundamental study in to the correlation of nucleation mechanism with deposit morphology using silver salts as a well behaved system has been carried out in deep eutectic solvents i.e. mixtures of choline chloride (ChCl) with firstly ethylene glycol and secondly urea in a 1:2 molar ratio. The nucleation and growth kinetics of silver deposition were measured as a function of liquid type, deposition potential and silver salt type. The effect of different additives including surfactants (SDS and CTAB) and aqueous brightener (cresyl fast violet-CFV and crystal violet-CV) on nucleation was determined using electrochemical techniques such as cyclic voltammetery and chronoamperometery. Electrogravimetric studies were carried out using electrochemical quartz crystal microbalance (EQCM) to correlate the deposited mass of silver with findings from the electrochemical studies in both solvents. A qualitative evaluation of the nucleation and growth mechanism and quantitative estimation of the kinetic parameters of silver electrocrystallization process was carried out using the existing theoretical formalisms. A computer simulation was used to extract the nuclear number density, rate of nucleation, diffusion co-efficient and influence of the double layer charging by fitting the whole potentiostatic current transients using a ‘non-linear best fitting’ method. The analysis of the development of the surface by nucleation and growth of the silver deposition in real time was studied using the ex-situ AFM and in-situ DHM. The latter of these was the first demonstration of this technique for the study of nucleation and growth mechanism of metal deposition and the results showed good agreement with the ex-situ AFM findings.

History

Supervisor(s)

Abbott, Andrew

Date of award

2012-06-22

Awarding institution

University of Leicester

Qualification level

  • Doctoral

Qualification name

  • PhD

Language

en

Usage metrics

    University of Leicester Theses

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC