The Effect of Controlled Shot Peening on the Microstructure and Fatigue Behavior of Wet Copper-Based Powder Metallurgy Friction Plates

<div><p>The effects of shot peening treatments on the microstructure and fatigue behavior of the teeth root in wet copper-based powder metallurgy friction plates were investigated and an efficient method for selecting optimal shot peening parameters for friction plates was proposed. Different experimental processes including microscopy observation, microhardness, roughness and X-ray diffraction measurements have been performed to characterize the treated surface of specimens. It is found that fatigue life of friction plates firstly increases and then decreases with the increase of Almen intensity, and the optimal fatigue life has improved over 55%. It is considered that both surface grain refinement and high residual compressive stress are the main ingredients responsible for the improved fatigue life. With further increase of Almen intensity, surface roughness of the teeth root gradually increases to a critical point, where rough peened surface may induce crack initiation due to stress concentration, and finally lead fatigue deteriorate.</p></div>